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Abstract
An ordinary differential equation describing the transverse profiles of U-shaped glacial valleys has
two formal analogies, which we explore in detail, bridging these different areas of research. First, an
analogy with point particle mechanics completes the description of the solutions. Second, an analogy
with the Friedmann equation of relativistic cosmology shows that the analogue of a glacial valley
profile is a universe with a future singularity of interest in theoretical models of cosmology. A Big
Freeze singularity, which was not previously observed for positive curvature index, is also contained
in the dynamics.
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1. Introduction
It has long been acknowledged in glaciology (since its inception) (Campbell 1865; McGee 1894),
and it is common knowledge in elementary geography, that valleys carved by glaciers are
U-shaped, whereas valleys carved by rivers are V-shaped. Here we focus on the former. The
detailed and continued process of reshaping a valley by a glacier via erosion of the valley walls
and floor over time is complex and is best modelled with numerical techniques (Harbor 1995;
Seddik et al. 2009; Yang and Shi 2015). If one is interested only in the final result of the glacier
action, simpler analytical approaches can be used. Given the scarcity of analytical models in the
literature, theoretical approaches to this problem are valuable. Hirano and Aniya (1988) proposed
a variational principle extremizing the friction of ice against the valley walls, subject to an appro-
priate constraint. Let the cross-sectional profile of a glacial valley be described by a function y(x),
where x is a coordinate transverse to the glacier flow. Hirano and Aniya (1998) argued that fric-
tion (a functional of the cross-profile y(x)) should be minimal at the end of the erosion process,
subject to the constraint that the contact length of the cross-profile of the ice is constant. This
contact length between two endpoints x1 and x2 of the transverse profile is

s½ yðxÞ� =
Z

x2

x1

ds =
Z

x2

x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 + dy2

q
=
Z

x2

x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + ðy 0Þ2

q
dx = const: (1.1)

where a prime denotes differentiation with respect to x. The friction force is modelled by
Coulomb’s law as f = μN, where μ is the friction coefficient and the normal force is N = ρghA1.
Here ρ is the ice density, g is the acceleration of gravity, h is the ice thickness, and A1 is the area
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of contact between the ice and the bed.1 By considering a unit width of ice in the longitudinal
direction, the friction force due to an element of contact length ds is df = μPds. Further,
P = η(ys − y), where ys denotes the ice surface and η is a constant. Extremizing the friction

f ½ yðxÞ� = μη

Z
x2

x1

ðys − yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + ðy 0Þ2

q
dx (1.2)

subject to the constraint (eq. 1.1) leads to

δJ = μηδ

Z
x2

x1

ðys − y + λÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + ðy 0Þ2

q
dx ≡ δ

Z
x2

x1

L = 0 (1.3)

where λ is a Lagrange multiplier and L is the Lagrangian. The Euler–Lagrange equation

d
dx

�
∂L
∂y 0

�
−

∂L
∂y

= 0 (1.4)

yields the ordinary differential equation (ODE) (Hirano and Aniya 1988)

ys − y + λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + ðy 0Þ2

p = c1 (1.5)

where c1 is a constant. This equation is also obtained by solving the classic catenary problem of
mechanics (Goldstein 1980), and therefore, it is not surprising that Hirano and Aniya (1988)
obtained catenary solutions of eq. (1.5). Their method and conclusions have been criticized by
Harbor (1990; see also Hirano and Aniya 1990; Hirano and Aniya 2005; Morgan 2005). First,
the assumptions in the model of Hirano and Aniya (1988) are inconsistent with common assump-
tions of glaciology (Harbor 1990). Second, friction should be maximized, not minimized (Harbor
1990; although this change does not affect the first-order variational principle, which only
requires the friction integral to be extremized). In a reply, Hirano and Aniya (1990) agreed on this
point but stood by the validity of application of the variational principle and of their previous
result. Further critique (Morgan 2005) pointed out that there is no physical basis for the isoperi-
metric constraint (eq. 1.1), which should be replaced by the requirement that the area of the
cross-section of the glacial valley is fixed. The rationale is that by considering a unit width of ice
in the direction of longitudinal flow, the ice volume is thus kept constant (Harbor 1990).

The new Lagrangian constraint in the variational principle leads (Morgan 2005) to the ODE�
y 0

y

�
2
=

1
ðλy − CÞ2 −

1
y2

(1.6)

where y(x) is now the ice thickness at transverse coordinate2 x, λ is again a Lagrange multiplier, and C
is a constant, with λ > 1 and C > 0 required to have a smooth symmetric solution y(x) on the interval
[−x0, x0] with y′(0) = 0 (Morgan 2005). Equation (1.6) is adopted in the rest of this work to describe
the transverse profiles of glacial valleys. An exact solution of eq. (1.6) was provided by Morgan (2005):

ðλ2 − 1Þjxj = Cλ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
+ C arccos w (1.7)

1If present, water pressure between the glacier and its bed is treated as constant and does not contribute to the
variational principle (Hirano and Aniya 1988).
2The valley profile is now z(x) = ys− y(x) (cf. Figure 1 of Morgan 2005).
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where

w =
�
λ2 − 1
C

�
y − λ (1.8)

−
1
λ
≤ w ≤ 1,

C
λ
≤ y ≤

C
λ − 1

(1.9)

Another formal solution of eq. (1.6) for λ2< 1 has been given recently by Chen et al. (2015a):

±
ð1 − λ2Þ3=2

jDj x = λ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
+ ln jw +

ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
j + D (1.10)

where D is an integration constant and |w|> 1. For C = 0 and |λ|< 1, the solutions are linear.

The constraint of fixed cross-sectional area of the valley may perhaps seem questionable but no better
constraint has been proposed in the literature thus far. The requirement of fixed cross-sectional area is
also used in the numerical modelling of the erosion process leading to U-shaped valleys (Seddik et al.
2009). In any case, some constraint must be imposed, because if the friction integral is maximized
without constraints, the first-order variation

δ

Z
x2

x1

ðys − yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + ðy 0Þ2

q
≡ δ

Z
x2

x1

L0 = 0 (1.11)

where the Lagrangian is now

L0ðyðxÞ,y 0ðxÞÞ = ðys − yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + ðy 0Þ2

q
(1.12)

produces an equation that only admits unphysical solutions. In fact, as the Lagrangian (eq. 1.12) does
not depend explicitly on x, the corresponding Hamiltonian ℋ0= pyy′− L0 is conserved, where

py =
∂L0
∂ðy 0Þ =

ðys − yÞy 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + ðy 0Þ2

p (1.13)

is the momentum canonically conjugated to y. The Euler–Lagrange equation (eq. 1.4) for L0 has the
first integral

ðys − yÞðy 0Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + ðy 0Þ2

p − ðys − yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + ðy 0Þ2

q
= C (1.14)

where C is a constant. Using the variable ξ ≡ ys − y > 0, eq. (1.14) is equivalent to

C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + ðξ 0 Þ2

q
+ ξ = 0, which requires that C< 0; hence we set C≡−C2, where C2> 0 has the dimen-

sions of a length. One obtains

ξ
0
= ±

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2

C2
2
− 1

s
(1.15)

which requires ξ ≥ C2 > 0. All the solutions ξ(x) of eq. (1.15) are unbounded from above and are
given by
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ys − yðxÞ = C2
2e

∓ðx−x0Þ
C2 +

e±
ðx−x0Þ
C2

4
(1.16)

(with x0 another integration constant) and require |x| ≥ C2, which does not describe a valley
geometry. Therefore, some Lagrangian constraints must be imposed when extremizing the fric-
tion integral f [y(x)].

The fact that eq. (1.6) has an analogue in point particle mechanics was missed in the glaciology liter-
ature, whereas the fact that it has an analogue in the Friedmann equation of cosmology was recently
noted in passing by Chen et al. (2015a, 2015b). Equation (1.6) is a special case of Friedmann-type
equations, which are of fundamental importance in cosmology. A mathematical peculiarity of this
type of equations demonstrated by Chen et al. (2015b) is that the graphs of all the solutions (in our
case, of the transverse valley profiles y(x)) are roulettes. A roulette is the locus of a point that lies
on, or inside, a curve that rolls without slipping along a straight line.3

Our goal is to explore the analogues of the ODE (eq. 1.6) in point particle mechanics and in cosmol-
ogy, obtaining insight into the properties of this equation and establishing the basics of the formal
analogies for future reference. We uncover a type of cosmological singularity, which was studied
recently (Bouhmadi-López et al. 2008) for spatially flat universes in the now abundant literature
on cosmological singularities (Wald 1984; Barrow et al. 1986; Caldwell 2002; Shtanov and Sahni
2002; Barrow 2004; Nojiri et al. 2005; Dabrowski et al. 2007; Fernandez-Jambrina 2007;
Dabrowski and Denkiewicz 2009; Frampton et al. 2011; Bouhmadi-López et al. 2015; Beltran
Jimenez et al. 2016).

2. Particle mechanics analogues of glacial valley
cross-profiles
Following Morgan (2005), we assume C> 0 (but see the discussion below). The ODE (eq. 1.6) can be
rewritten as

ðy 0Þ2
2

+ VðyÞ = E (2.1)

where (y′)2/2 is the kinetic energy of a particle of unit mass in one-dimensional motion if x and y(x)
are the analogues of time and position, respectively, whereas

VðyÞ ≡ −y2

2ðλy − CÞ2 (2.2)

is an effective potential energy and E = −1/2 is the total mechanical energy of the particle. Newton’s
second law y″ = −dV/dy then rules the motion of the particle and eq. (2.1) is a first integral corre-
sponding to conservation of energy (with the value E = −1/2). The possible motions y(x) are candi-
date analogues of the cross-profiles of glacial valleys. A qualitative understanding of the motion can
be obtained from the potential V(y) and its intersections with the horizontal line E = −1/2
(Weierstrass approach; Bochicchio and Laserra 2007; Destrade et al. 2007; Bochicchio et al. 2011).

It is V(y)< 0 ∀y≠ 0, V(0) = 0, V(y)→−1/(2λ2) as y→±∞, there is a vertical asymptote y = C/λ> 0,
and V′(y) = Cy/(λy − C)3, therefore the function V(y) increases for y < 0 and for y > C/λ, decreases

3A more general definition is that the curve rolls without slipping along another curve but, for Friedmann-type
equations, the latter is taken to be a straight line (Chen et al. 2015b).
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for 0< y< C/λ, and is maximum at y = 0 (Fig. 1). We look for regions of bounded motions y(x) > 0
corresponding to finite ice thickness. We restrict to the situation C > 0, λ > 0 for which the vertical
asymptote y = C/λ of V(y) lies in the y > 0 region. However, eq. (1.6) and the potential V(y) are
invariant under the exchange (C, λ)→ (−C, −λ).

2.1. The case λ> 1
If E = −1/2<−1/(2λ2), corresponding to |λ|>1 (and we take λ> 1 here), the horizontal line E = −1/2
lies below the horizontal asymptote of V(y) (Fig. 1). There are two regions corresponding to bounded
motions y(x)> 0 (we ignore the region y< 0 as it is meaningless for the glacial valley problem). The first
such region is

0 < y1 ≤ yðxÞ < C
λ

(2.3)

whereas the second region is

C
λ
< yðxÞ ≤ y2 (2.4)

where y1,2 are turning points. The condition λ > 1 for the bounded solutions of Morgan (2005) now
receives a graphical interpretation. The particle cannot attain the position y = C/λ where the poten-
tial diverges and is therefore confined to either one of the regions (eqs. 2.3 or 2.4). The turning
points y1,2 are

4 the roots of the equation (λ2 − 1)y2 − 2λCy + C2 = 0, or

y1;2 =
C

λ ± 1
(2.5)

The range C/λ < y(x) ≤ C/(λ − 1) reproduces the condition (eq. 1.9) reported by Morgan (2005),
whereas the range C/(λ + 1) ≤ y(x) < C/λ does not appear in the analysis of this reference, which is
therefore augmented by the graphical analogy with mechanics.

−4 −2 2 4

−2

−3

−4

−5

−1

0

1 Fig. 1. The potential V(y) intersecting
the horizontal line of constant energy
E = −1/2. (The parameter values λ = 2
and C = 1 are chosen for illustration.)

4The turning points correspond to zero slope of the valley profile y(x), therefore to its lowest point.
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2.2. The case λ = 1
If E = −1/2 = −1/(2λ2), corresponding to λ = 1, there is only unbounded motion in the region
y> C/λ, but there is a region of bounded motion y3 = C/2 ≤ y(x)< C/λ, which can make sense as the
transverse profile of a glacial valley (Fig. 2). As λ→ 1+, one of the turning points (eq. 2.5) is pushed
to infinity and effectively disappears, leaving a single turning point y3 = C/2.

2.3. The case 0< λ< 1
If −1/(2λ2)< E = −1/2, corresponding to λ< 1, the horizontal line of constant energy lies above the
horizontal asymptote of V(y) and intersects the graph of V(y) only once in the region y > 0. There
is a region of bounded motion y4≤ y(x)< C/λ. The situation is qualitatively similar to the λ = 1 case.
The turning point y4 = C/(1−λ) lies in the y> 0 region, whereas the second turning point y5 = −C/
(1 + λ) lies in the uninteresting region y < 0. The analytic solution (eq. 1.10) of eq. (1.6) found by
Chen et al. (2015a) belongs to this situation.

2.4. The case λ< 0
Let us comment on the second condition C> 0 of Morgan (2005) and assumed at the beginning of this
section. Given the symmetry of eq. (1.6), the situation C< 0 and λ> 0 is equivalent to C> 0 and λ< 0,
which we discuss here. In this case, the vertical asymptote y = C/λ of V(y) lies in the y < 0 region,
and V′(y) is negative for y < C/λ < 0 and y > 0 and is positive for C/λ < y < 0. The graph of V(y) is
shown in Fig. 3. If E = −1/2>−1/(2λ2) (corresponding to −1< λ< 0), there is only one intersection
y6 = C/(1+ λ) in the y> 0 region and there are no bounded motions.

In the remaining case C = 0, eq. (1.6) reduces to (y′)2 = −1+ 1/λ2, which has linear solutions corre-
sponding to V-shaped valleys, irrelevant as glacial valley cross-profiles except perhaps as initial con-
ditions (Seddik et al. 2009). This is why we assumed that C> 0 and we restrict to using this range of
C in the rest of this work.

2.5. Analogue of the no-constraint equation
In the mechanical analogy, the incorrect eq. (1.15), which would be obtained by extremizing friction
without any constraint, can be rewritten as the integral of motion (ξ′)2/2 + U(ξ) = E, where

1

0−2

−1

−2

−3

−4

−5

2 4−4

Fig. 2. The potential V(y) for λ = 1.
The horizontal line E = −1/2 intersects
the graph of V(y) only once for y > 0
and there is a region, bounded by this
intersection and by the vertical asymptote
y = C/λ, which describes bounded motion.
(The parameter value C = 1 is used in
this plot.)
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E = −1/2 and the potential energy UðξÞ = −ξ2=ð2C2
2Þ describes an inverted harmonic oscillator. All

trajectories (except for the unstable equilibrium position ξ ≡ 0, which is meaningless in the original
geophysical problem) are unbounded and unphysical.

3. The universe in a glacial valley
Relativistic cosmology (Wald 1984; Liddle 2003; Carroll 2004) is obtained by assuming that the four-
dimensional spacetime of general relativity is spatially homogeneous and isotropic about every point
of three-space, which leads uniquely to the Friedmann–Lemaître–Robertson–Walker (FLRW) line
element (Wald 1984; Liddle 2003; Carroll 2004)

ds2 = −dt2 + a2ðtÞ
�

dr2

1 − kr2
+ r2ðdθ2 + sin2θdφ2Þ

�
(3.1)

in comoving polar coordinates (t, r, θ, φ), where the curvature index is normalized to k = 0,±1, in
units in which the speed of light c is unity. The matter content of the universe is assumed to be in
the form of a single perfect fluid with energy density ρ and pressure P. The functions a(t), ρ(t), and
P(t) satisfy the Einstein–Friedmann ODEs (Wald 1984; Liddle 2003; Carroll 2004)

H2 ≡
ȧ2

a2
=
8πG
3

ρ −
k
a2

(3.2)

a
::

a
= −

4πG
3

ðρ + 3PÞ (3.3)

where an overdot denotes differentiation with respect to t and HðtÞ ≡ ȧ=a is the Hubble function, and
G is Newton’s constant. A third convenient (but not independent) equation expressing covariant con-
servation of energy is (Wald 1984; Liddle 2003; Carroll 2004)

1

0 2−2

−1

−2

−3

−4

−5

−4 4

Fig. 3. The potential V(y) for negative C.
In this case, the motion is forbidden in
the y > 0 region if E = −1/2 ≤ −1/(2λ2).
If −1< λ< 0, the line E = −1/2 intersects
the graph of V(y) only at y6 = C/(1 + λ)
in the y > 0 region and there are no
bounded motions. (The parameter values
λ = 2 and C = −1 are chosen for
illustration.)
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ρ̇ + 3HðP + ρÞ = 0 (3.4)

The Friedmann equation (eq. 3.2) is the analogue in cosmology of eq. (1.6) describing the ice thick-
ness in glacial valley transverse profiles. The analogy was recently noted, but not pursued, by Chen
et al. (2015b). The most straightforward identification between eqs. (1.6) and (3.2) is achieved by set-
ting k = 1, which corresponds to a closed universe. Then the cosmological analogue of eq. (1.6)

ȧ2

a2
=

1
ðλa − CÞ2 −

1
a2

(3.5)

can be rewritten as

ȧ2

a2
=
8πG
3

ρ0
ða − a0Þ2

−
1
a2

(3.6)

where

ρ0 =
3

8πGλ2
; a0 =

C
λ

(3.7)

are positive constants. Equation (3.2) gives the energy density of the analogue cosmic fluid as

ρðtÞ = ρ0
ða − a0Þ2

(3.8)

We stress that we study the analogy with possible theoretical models of the future universe dominated
by an exotic dark energy, which abound in the literature, and not the actual universe at the present
time, which is indeed dominated by dark energy but also contains a non-negligible proportion of dark
matter. Other details of the present universe cannot be reproduced by a single equation in the analogy
with glacial valley profiles.

Two properties of the density ρ(t) are relevant. First, the energy density is always positive, which is
expected of “reasonable” forms of matter but is not at all guaranteed in any formal analogy. Second,
the density diverges if a→ a0, corresponding to a spacetime singularity.

“Reasonable” matter in general relativity is supposed to satisfy energy conditions that prohibit nega-
tive energy densities and energy flows faster than light (Wald 1984; Liddle 2003; Carroll 2004).
When applied to a perfect fluid, the energy conditions are the weak energy condition (ρ≥ 0 and ρ+
P ≥ 0), the strong energy condition (ρ + P ≥ 0 and ρ + 3P ≥ 0), the null energy condition (ρ + P ≥ 0)
and the dominant energy condition (ρ≥ 0 and ρ≥ |P|; Wald 1984; Liddle 2003; Carroll 2004).

The effective pressure P of the analogue cosmic fluid is deduced by imposing eq. (3.4), which yields

P =
2ρ0a

3ða − a0Þ3
−

ρ0
ða − a0Þ2

(3.9)

and can be rewritten as

P = −
ρ

3
±

2a0
3

ffiffiffiffiffi
ρ0

p ρ3=2 (3.10)

where the upper sign applies when a> a0 and the lower sign when a< a0. Using eqs. (3.8)–(3.10), one
concludes easily that for a > a0, the weak, strong, and null energy conditions are always satisfied and
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the dominant energy condition is satisfied only when a ≥ 3a0/2. When a < a0, all the energy condi-
tions are violated. Equations of state of the cosmic fluid corresponding to the lower sign in
eq. (3.10) and violating the weak energy condition have been discussed by Barrow (2004). Equations
of state of the cosmic fluid of the form P =

P
m
k=1 ckρ

k
ðkÞ have been studied by Chen et al. (2015a,

2015b), Stefancic (2005), Frampton et al. (2011) and Bouhmadi-López et al. (2015). Quadratic equa-
tions of state, in particular, have been the subject of further attention (Nojiri and Odintsov 2004,
2005; Ananda and Bruni 2006a, 2006b; Capozziello et al. 2006; Silva e Costa 2009). Pressures depend-
ing on fractional powers of the density have been studied by Nojiri et al. (2005). As discussed below,
they give rise to a peculiar type of singularity. Although traditional cosmology and relativity textbooks
report only linear barotropic equations of state P = P0+ Aρ, following the discovery of the accelera-
tion of the universe in 1998, the literature abounds with exotic non-linear equations of state for the
dark energy fluid postulated to explain this acceleration. Let us consider now the acceleration equa-
tion (eq. 3.3), which, using eq. (3.9), reduces to

a
::

a
= −

a0
λ2ða − a0Þ3

(3.11)

Clearly, the universe is accelerating if a < a0 (corresponding to ρ+ 3P< 0) and decelerating if a > a0
(corresponding to ρ+ 3P> 0). The value a0 of the scale factor corresponds to a spacetime singularity.
In fact, the Einstein equation Rab − (1/2)gab R = 8πGTab (where Rab is the Ricci tensor) gives
R ≡ gab Rab = −8πGT, where T is the trace of the fluid energy momentum tensor (Wald 1984;
Liddle 2003; Carroll 2004)

Tab = ðP + ρÞuaub + Pgab (3.12)

with four-velocity ua. The Ricci scalar is, therefore,

R = 8πGðρ − 3PÞ = 16πGρ0
ða − a0Þ3

ða − 2a0Þ (3.13)

which diverges in the limit a→ a0 signalling a spacetime singularity. It is not yet clear whether the
value a0 of the scale factor can actually be approached during the dynamics. To answer this question,
note that eq. (3.2) can be written as

a2 ≥ λ2ða − a0Þ2 (3.14)

excluding the orbits of the solutions of the dynamical system (eqs. 3.2 and 3.3) from a certain volume
of the (a, ȧ) phase space.

If a> a0, the dynamical constraint (eq. 3.14) can be written as a ≤ λa0/(λ−1). The coefficient of a0 is
λ/(λ−1) = 1+ 1/(λ−1)> 1, and therefore, in this regime we have a0< a< λa0/(λ− 1); the scale factor
a(t) is bounded from above but it can get arbitrarily close to the value a0 corresponding to the
singularity.

If instead a< a0, then the constraint (eq. 3.14) becomes a≥ λa0/(λ + 1) and one has 0< λa0/(λ+ 1)≤
a < a0. In both cases, the scale factor is bounded from below by a positive constant (hence one cannot
have a Big Bang- or Big Crunch-type singularity corresponding to a→ 0; Wald 1984; Liddle 2003;
Carroll 2004) but it can reach the singularity5 a0. It corresponds to the fact that y = 0 (equivalently
a = 0) lies in the region of the phase space forbidden by the constraint (eq. 3.14).

5The fact that one cannot have y = 0 in the original equation (eq. 1.6) because it implies an imaginary y′ was
noted as “a curious feature” by Morgan (2005).
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The boundary values a = λa0/(λ∓1) are formal solutions of eq. (3.5) obtained by setting a = con-
stant, but they do not satisfy eq. (3.3) (they would be meaningless as analogues of glacial valley
profiles).

Consider again the acceleration equation (eq. 3.3): if a> a0, then a
::
< 0 and the curve representing the

scale factor has concavity facing downwards. As this curve is continuous, it always decreases and
eventually crosses the horizontal line a = a0.

Using eq. (3.7), eq. (3.5) is written as

ȧ2 =
a2

λ2ða − a0Þ2
− 1 ≈

a20
λ2ða − a0Þ2

(3.15)

as a→ a0. This asymptotic equation is easily integrated to

aðtÞ ≃ a0 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a0
λ

jt − t0j
r

(3.16)

where the integration constant t0 has the meaning of time at which the singularity occurs and the
positive sign of the square root must be chosen because a> a0. This situation constitutes a physically
meaningful analogue of glacial valleys because y is the thickness (maximum at x = 0 and minimum at
the valley boundaries; Morgan 2005) and it is interesting in cosmology because it provides an example
of a finite-time singularity even when ρ > 0 and ρ + P > 0 (i.e., without violating the weak energy
condition), an interesting situation discussed by Barrow (2004). Vice versa, if a < a0 then a

::
> 0 and

a(t) always increases, eventually crossing the horizontal line a = a0. The asymptotic equation
(eq. 3.15) now integrates to

aðtÞ ≃ a0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a0
λ

jt − t0j
r

(3.17)

choosing the negative sign in front of the square root because now a < a0. This situation is not a
meaningful analogue of a glacial valley cross-profile. The slope of this function becomes infinite
where a(t)→ a0, corresponding to a spacetime singularity in the cosmological analogue. In this
case, the universe has a minimum size amin = λa0/(λ + 1) and it bounces upon reaching it. The
bounce occurs when the weak energy condition is violated, which is exactly what is happening
here because ρ + P = 2ρ0a/3(a − a0)

3 < 0. The violation of the weak energy condition signals a
very exotic phantom fluid, which causes the universe to accelerate with Hubble function increas-
ing according to Ḣ = −4πGðρ + PÞ + k=a2 > 0 if k ≥ 0. This superacceleration causes the universe
to expand superexponentially and reach a singularity at a finite time. In the standard cosmologi-
cal literature, the scale factor of a phantom-dominated universe diverges at a finite time in the
future at a Big Rip singularity (Caldwell 2002), but here the situation is different because the scale
factor stays finite while the Hubble function H, energy density ρ, pressure P, and Ricci scalar R all
diverge as a→ a0. This situation corresponds instead to a type of singularity studied recently in
spatially flat universes and called a Big Freeze singularity (Bouhmadi-López et al. 2008) or
Type III singularity in the classifications of Nojiri et al. (2005) and Bamba et al. (2012). A Big
Freeze singularity also appears in cosmology in the context of Palatini f(R) gravity (Borowiec
et al. 2012, 2016; Szydlowski et al. 2016; Stachowski et al. 2016). A Big Freeze singularity was not
previously reported for positively curved universes. The situation is essentially the same as for
spatially flat universes because, as a→ a0 in eq. (3.6), the divergent term proportional to (a − a0)

−2

in the energy density dominates over the curvature term −1/a2, which stays finite. Finite-time singular-
ities, including Big Rip (Caldwell 2002) and sudden future singularities (Barrow et al. 1986;
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Barrow 2004), have been the subject of a significant amount of work in cosmology (Shtanov and
Sahni 2002; Kofinas et al. 2003; Calcagni 2004; Gorini et al. 2004; Nojiri et al. 2005; Stefancic 2005;
Dabrowski et al. 2007; Fernandez-Jambrina 2007; Bouhmadi-López et al. 2008; Dabrowski
and Denkiewicz 2009; Frampton et al. 2011; Bamba et al. 2012; Bouhmadi-López et al. 2015;
Beltrán Jiménez 2016).

Finally, although not interesting for the original glacial valley problem, the cosmic analogue of
eq. (1.6) for C = 0 (noted also by Chen et al. (2015b)) corresponds to a0 = 0 and

H2 =
1
a2

�
1 − λ2

λ2

�
(3.18)

and requires |λ| ≤ 1. Then ȧ = constant and the solutions are linear in time and include a static
universe with a = constant as a special case.

4. Discussion
In glacial morphology studies, researchers content themselves with fitting data of glacial valley ice
thickness with parabolas y(x) = ax2 + bx + c (following an early practice initiated by Svensson
(1959), which is not free of critique (Pattyn and Van Huele 1998)). Other fitting curves used include
power-law profiles y(x) = axb, possibly with different powers b for each half-profile going from the
bottom at x = 0 to each valley side. There is a deep disconnect between theory and practice here.
As a parabola is just the second-order Taylor expansion of any sufficiently regular function with a
minimum, which could solve infinitely many ODEs, data fitting with parabolas is of no help when
one attempts to test models and to discriminate among theoretical approaches to the problem of
the cross-sectional profiles of glacial valleys, which predict different ODEs for the profile y(x). In this
sense, fitting parabolas or power-laws and determining best-fit parameters is deeply unsatisfactory
from the theoretical point of view and does not contribute to understanding the mechanism that gen-
erated these profiles.

Here we focused on the variational principle approach to the problem of glacial valley erosion, in
the form given by Morgan (2005). The resulting equation (eq. 1.6) for the ice thickness y(x) has
analogues in point particle mechanics and in cosmology, which we explored in detail. These
analogies contribute to a better understanding of this ODE, its solutions, and the conditions (on
the parameters λ and C) for their physical viability. The previous analysis of Morgan (2005) is
augmented by the graphical study of the effective potential V(y) in the mechanical analogy. The
problem of glacial valley profiles provides also an interesting example of a finite-time singularity
in current theoretical cosmological models without violating the weak energy condition. The
finite-time singularity is caused by the peculiar effective equation of state (eq. 3.10), which falls
into the broader category P = wρ − αρm (with w, α, and m constants), which has been the subject
of wide interest in cosmology6 (Shtanov and Sahni 2002; Kofinas et al. 2003; Barrow 2004;
Calcagni 2004; Gorini et al. 2004; Nojiri et al. 2005; Stefancic 2005; Frampton et al. 2011;
Bouhmadi-López et al. 2015).

The present work also highlights two open problems in glaciology. First, the friction of glacier
ice against the valley walls and floor is unlikely to be described purely by Coulomb’s law, but
it should include viscous friction that depends on the velocity (a friction model quadratic in

6Note that in the work of Kofinas et al. (2003) the conditions are similar to those of our analogue model only in
the far future.
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the velocity is used, for example, in the numerical work of Seddik et al. (2009)). Second, the
numerical analyses of the formation of glacial valleys ignore the variational approach (but not
its Lagrangian constraint) and should be compared with it. These issues will be revisited in
future work.
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