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Abstract
Malaria is a life-threatening parasitic disease transmitted to humans by infected female Anopheles mosquitoes. Early and

accurate diagnosis is crucial to reduce the high mortality rate of the disease, especially in eastern Indonesia, where limited
health facilities and resources contribute to the effortless spread of the disease. In rural areas, the lack of trained parasitolo-
gists presents a significant challenge. To address this issue, a computer-aided detection (CAD) system for malaria is needed to
support parasitologists in evaluating hundreds of blood smear slides every month. This study proposes a hybrid automated
malaria parasite detection and segmentation method using image processing and deep learning techniques. First, an opti-
mized double-Otsu method is proposed to generate malaria parasite patch candidates. Then, deep learning approaches are
applied to recognize and segment the parasites. The proposed method is evaluated on the PlasmoID dataset, which consists of
468 malaria-infected microscopic images containing 691 malaria parasites from Indonesia. The results demonstrate that our
proposed approach achieved an F1-score of 0.91 in parasite detection. Additionally, it achieved better performance in terms
of sensitivity, specificity, and F1-score for parasite segmentation compared to original semantic segmentation methods. These
findings highlight the potential of this study to be implemented in CAD malaria detection, which could significantly improve
malaria diagnosis in resource-limited areas.
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1. Introduction
Patients suffer from malaria when their blood contains

malaria parasites. The parasites are transmitted into the body
through a bite of infected female Anopheles mosquitos, and
they multiply in the red blood cells (RBCs) and spread to other
cells. According to the World Health Organization (WHO),
malaria is a public health issue that spreads to most coun-
tries, mainly tropical countries. Up to 90 countries were en-
demic malaria areas and more than four hundred thousand
dead people in 2017. The most vulnerably infected, 61%, were
children under 5 years (Anon 2018).

One of the most extensively used malaria diagnosis tech-
niques is the malaria rapid diagnostic test. It provides less
than a 10% false positive (FP) rate. In addition, the test is
easy to use and offers quantitative diagnoses within <30 min.
However, this technique cannot determine the number and
type of parasites (Moody 2002).

Another malaria diagnosis technique, the cornerstone of
parasite-based malaria diagnosis, is a manual light micro-
scopic examination. This technique encourages further anal-
ysis by observing a micron part on the slide using a zooming
microscope. However, the diagnosis result of this technique

depends on the examiner’s expertise and thoroughness. In
addition, this technique is laborious because the examiner
usually takes 30 min to find and count the parasite in a sin-
gle thin blood smear (Maqsood et al. 2021).

Hundreds of blood smear films are examined every week
in the endemic area. Therefore, it carries massive resources
and economic demand (Maqsood et al. 2021). Moreover, some
previous studies found that manual microscopy assessments
produced subjective results due to different experience of the
examiner (Thimasarn et al. 2002; Mitiku et al. 2003; Bates et
al. 2004; Tek et al. 2009). This situation is even worse because
of lack of experienced examiners in the rural areas. Further-
more, the lack of health facilities and resources in rural areas
might negatively affect blood smear film quality, as there are
many presented artifacts and noises. Automated malaria de-
tection methods use minimum human intervention. There-
fore, the automated detection systems are more objective, re-
liable, and efficient than manual examinations.

Today, many automated malaria parasite detection meth-
ods with excellent performances have been proposed. Gen-
erally, there are three groups of methods for automat-
ing malaria parasite detection, namely, traditional methods,
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modern (artificially intelligent) methods, and hybrid meth-
ods. The traditional methods involve human knowledge in
the malaria parasite detection process. The traditional meth-
ods mostly use complex image processing techniques to pro-
duce the object candidates and extracting object features us-
ing hand-engineered features, namely, color, intensity, shape,
and texture (Frean 2010; Moon et al. 2013; Poostchi et al.
2018; Nugroho 2019a, 2019b). There are three main steps in
the traditional method. The first step is to segment RBCs from
microscopic thin blood smear images using various image
segmentation techniques. The second step is to compute a set
of features applying hand-engineered techniques, and then
feed these features into a classifier. The final step is to clas-
sify the infected RBCs.

Several public datasets have been introduced to support
the development of automated malaria detection and seg-
mentation systems. Quinn et al. (2014) presented a malaria
public dataset. The dataset included 1182 microscopic im-
ages of thick blood smears captured by a smartphone camera.
It consisted of 948 malaria-infected images with 7628 para-
sites. However, the parasites only consist of Plasmodium fal-
ciparum. An early-generation malaria dataset was introduced
by Loddo et al. (2018). The dataset consisted of 229 micro-
scopic images captured from thin blood smear films using
Leica optical laboratory microscope. It contained 483 malaria-
infected blood cells of 48 000 blood cells. The dataset included
all malaria parasite species and their life stages. However, the
parasite class distribution is significantly unbalanced. One of
the classes consists of 695 parasites, and the other four classes
consist of less than five parasites. The other large malaria
dataset is introduced by Sultani et al. (2022). They introduced
a malaria dataset captured with multimagnification scales in
1257 thin blood smears with 3624 parasites. However, this
dataset only contains Plasmodium vivax. Recently, Nugroho et
al. (2022) presented a new dataset for malaria parasite detec-
tion and segmentation in thin blood smears. This dataset in-
cludes 559 microscopic images with 691 malaria parasites.
It was captured from hundreds of thin blood smears col-
lected from rural areas in Indonesia. The advantage of this
dataset is that it includes all malaria parasite species and
their life stages with better class distribution than Loddo et al.
(2018).

Maysanjaya et al. (2016) applied Otsu method to find the
global threshold value for segmenting P. Vivax, one kind of
malaria parasite. They used a combination of the red channel
of RGB and the saturation channel of HSV color space as pre-
processing to suppress the noise. The method performance
achieved an accuracy of 0.93. Dave and Upla (2017) also ap-
plied the original Otsu technique to find the global threshold
value for RBCs. In addition, they used some rule-based meth-
ods to segment the parasites. Unfortunately, this study does
not state the malaria parasite types in their dataset. How-
ever, both these studies use a dataset containing only 30 mi-
croscopy images with well-separated RBCs. To find a global
threshold value, Memeu et al. (2013) proposed a double Otsu
method to segment the dark objects, such as parasites, white
blood cells (WBCs), and artifacts. The segmented areas were
then classified by an artificial neural network to find the par-
asites. As a result, they obtained an accuracy of 0.95. More-

over, the proposed method achieved a fast implementation
in computational time.

Currently, deep learning (DL) approaches have successfully
eliminated the issues of traditional methods, such as hand-
crafted feature extraction, unreliability, and complex rule
base. Instead, DL models have hidden layers whose task is
to extract the features automatically (Nautre et al. 2020).
However, DL approaches need an extensive dataset for train-
ing their model to obtain a good performance. In addi-
tion, collecting datasets in the medical field is more diffi-
cult and limited compared to non-medical fields. Therefore,
many studies have introduced some image augmentation al-
gorithms to overcome the problem of small data or even im-
balanced data. The algorithms are also based on image pro-
cessing and DL techniques. Traditional image augmentation
methods based on image processing include geometric trans-
formations (Nugroho and Nurfauzi 2021a; Nugroho et al.
2021), affine transformations (Nugroho and Nurfauzi 2021a;
Nugroho et al. 2021), Euclidean geometry (Nugroho and Nur-
fauzi 2021a), blurring (Nugroho and Nurfauzi 2021a), con-
trast enhancement (Nugroho and Nurfauzi 2021a; Nugroho
et al. 2021), and color transformation (Nugroho and Nurfauzi
2021b).

DL for object detection algorithms has two kinds of ap-
proaches, namely one-stage and two-stage detectors. These
algorithms are widely utilized to overcome the limitations
in diverse medical fields, especially in medical image analy-
ses, including the detection of organs and their abnormali-
ties (Liu et al. 2018; Tang et al. 2018; Lemay 2019), detection
and segmentation of thyroid in ultrasound images (Nugroho
et al. 2021), detection of pulmonary diseases (Ma et al. 2019;
Sirazitdinov et al. 2019; Xiao et al. 2019), detection of can-
cers (Ezhilarasi and Varalakshmi 2018; van Rijthoven et al.
2018; Liu et al. 2019; Ünver and Ayan 2019), detection and
segmentation hemorrhages (Chang et al. 2018), as well as clas-
sification and segmentation of microscopy images (Lo et al.
2018; El-Melegy et al. 2019; Kutlu et al. 2020; Nakasi et al.
2021).

Faster R-CNN, a famous DL architecture for object detection
using a two-stage detector (Ren et al. 2017), was applied to de-
tect and classify malaria parasites in thin blood smears (Hung
et al. 2018). This method was evaluated on a public dataset
containing 1300 microscopic thin blood smear images. How-
ever, the database only contains one parasite variant (P. Vi-
vax) with four stages (ring, trophozoite, schizont, and gameto-
cyte). The proposed method (Hung et al. 2018) had low results
in detection results for trophozoite and ring classes. More-
over, due to the similarity in shape and intensity between
malaria parasites and artifacts, this model produced a high
rate of FP results for both classes.

Recently, YOLO, the most popular algorithm for object de-
tection has shown good performance in malaria parasite de-
tection. Chibuta and Acar (2020) applied YOLO v3 to detect
malaria parasites in two thick blood smear datasets. Their
study found that the YOLO-based algorithm had a better per-
formance for malaria detection compared to the previous one
(SW + CNN). In another study, Abdurahman et al. (2021) com-
pared YOLO v3, YOLO v4, SSD, and faster R-CNN to detect
malaria parasites on thick blood smears. The results showed
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that both YOLO versions performed better than the other two
architectures.

DL for semantic segmentation is a technique to seg-
ment objects on an image. Some familiar architectures have
been proposed, including FCN (Long et al. 2015), U-Net
(Ronneberger et al. 2015), and DeepLab (Chen et al. 2018a).
Ronneberger et al. (2015) proposed an architecture called U-
Net, which has become famous because it performs well in
many medical image applications, such as breast tumor seg-
mentation (Robin et al. 2021) and brain tissue segmentation
in MR images (Woo and Lee 2021). Nautre et al. (2020) also
applied U-Net to segment malaria parasites on thin blood
smear by combining a preprocessing technique for malaria
parasite film called GGB (green–green–blue) normalization.
They also compared with other color spaces, such as RGB
and HSV. The result shows that using GGB normalization is
the best combination. They achieved a good performance on
the accuracy of 0.995. However, they only inform accuracy,
which does not represent oversegmentation and underseg-
mentation even when the image contains small objects com-
pared to its background.

He et al. (2016) proposed an improved U-Net called Res-
UNet, which won first place in the ImageNet competition.
The architecture resulted from combining U-Net and ResNet
with some modifications was aimed to solve the deep gradi-
ent degradation problem. The modification consisted of the
following process: (1) designing the convolutional layer, resid-
ual unit, and polling layer by adopting the basic concept of
ResNet; (2) designing a feature extractor on upsampling and
downsampling layers using residual concept motivated by
ResNet; (3) applying a linear interpolation technique in the
deconvolution step; and (4) adjusting the number of output
classes according to user needs.

ResFCN-18 is an improved FCN architecture (Zhu et al.
2020). The large input image required three times down-
sampling of the feature map and deconvolution layer to get
small image patches. Therefore, this architecture modifica-
tion was based on the feature extractor models on the fea-
ture maps. They used three feature extractors. One of them
applied ResNet-18 architecture. A recent semantic segmenta-
tion model is DeepLabV3, proposed by Chen et al. (2018b).
This model used a new feature map extractor named atrous
convolution. This convolution model aims to minimize spa-
tial information lost during extracting feature extractor by
convoluting and pooling using the traditional manner.

As mentioned earlier, some significant issues to solve in
this study are described below.

1. Some DL models for object detection and semantic seg-
mentation have promised results in many applications.
However, the applications in malaria parasite fields are
still infrequently explored. Therefore, this study explores
some recognized DL architectures in object detection and
semantic segmentation on our challenging dataset.

2. We proposed a new hybrid method by combining op-
timized threshold and DL-based techniques so that the
method can run well for malaria parasite detection and
segmentation in thin blood smears images. We also com-
pared our proposed method with the famous architec-

tures in DL for object detection and semantic segmenta-
tion.

2. Method and materials

2.1. Data
The PlasmoID dataset (Nugroho et al. 2022) consisted of

hundreds of microscopy slides from the Eijkman Institute
and Parasitology Laboratory of Universitas Gadjah Mada.
Most slides provided by Eijkman Institute were collected
from rural areas in Indonesia. These slides contain many ar-
tifacts, such as dust caused during staining and storage pro-
cesses. Figure 1 shows four kinds of the photos. Figure 1a
presents a good slide indicated by fairly distributed RBCs, fo-
cused objects, and less artifacts. On the other hand, Figs. 1b–
1d show our slides containing many artifacts, blurred objects,
and clumped RBCs.

Figure 1e illustrates the procedure of data collection. The
microscopic images were generated by capturing several
fields of view containing parasites on a thin blood smear film
without overlapping. We used a USB Optilab camera with a
1000× microscope magnification to capture the fields with
the output size image of 1600 × 1200 pixels. The dataset con-
sists of 468 fields of view from hundreds of slides with 691
parasites (Nugroho et al. 2022). After collecting the data, a
parasitologist from the Department of Parasitology, Univer-
sitas Gadjah Mada annotated each parasite’s boundary and
its classes.

2.2. Proposed method
This study aims to solve the issues of detecting malaria par-

asites in endemic areas in Indonesia’s rural areas. Therefore,
this study employed a malaria dataset collected from the tar-
geted areas to evaluate our proposed method’s performance.
We proposed a hybrid malaria detection using image process-
ing approach and DL techniques to run well on our dataset
with limited number of images containing many artifacts. As
shown in Fig. 2, the proposed method consists of four main
steps, extracting parasite patch candidates using image pro-
cessing techniques, balancing patch candidates using a ma-
chine learning technique, classifying patch candidates (par-
asite detection), and segmenting patch (parasite segmenta-
tion) using a DL technique. The different texture backgrounds
indicate the different techniques used. The detailed proposed
methods are explained as follows.

2.2.1. Parasite patch candidate extraction

The objective of this step is to generate malaria parasite
patch candidates for object detection and classification to re-
duce the computation time instead of using sliding windows
strategy. There are three primary stages to generating malaria
parasite candidate patches shown in Fig. 3, image process-
ing, calculating a global optimum threshold value, and set-
ting patches from labeled segmented areas.

In the image processing stage, the image was prepared to
have low noise in four steps, including selecting a green chan-
nel, resizing the image resolution, linear contrast stretch-

FA
C

E
T

S 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.f
ac

et
sj

ou
rn

al
.c

om
 b

y 
3.

13
7.

16
5.

84
 o

n 
06

/0
1/

24

http://dx.doi.org/10.1139/facets-2022-0206


Canadian Science Publishing

4 FACETS 8: 1–12 (2023) | dx.doi.org/10.1139/facets-2022-0206

Fig. 1. Samples of our data: (a) clear appearance, (b) containing some artifacts, (c) blurred image, (d) stuck RBCs and (e) the
procedure data collection.

Fig. 2. The general proposed steps to detect malaria parasites on thin blood smear films.

ing, and image complement. By analyzing our data utiliz-
ing RGB (red, green, and blue) color space, we chose green
channel in our pre-processing step following up the results
of previous studies. Studies of Ross et al. (2006) and Rosado
et al. (2017) showed that the low-intensity objects, includ-
ing malaria parasites, appeared clearly with minimum lumi-
nance noise. After choosing the green channel, we resized
the image into half of the original one, whose resolution
was 1600 × 1200. We observed the morphology of malaria
parasites on the resized image to ensure no crucial miss-
ing information. Resizing step is aimed to reduce the com-
putational time. The linear image stretching technique was
applied to enhance the image contrast. Finally, image com-
plement was conducted to highlight the appearance of the
parasites.

The second stage was calculating a global threshold value.
In this stage, we proposed a new optimized method based
on a double Otsu technique to determine an optimum global
threshold value capable of adaptively separating the object’s
intensity and the background’s intensity. For example, as
shown in Fig. 4, a captured image from a thin blood slide
can be classified based on intensity into three classes, low,
medium, and high. The low-intensity objects are parasites,
WBCs, and some artifacts. On the other hand, medium- and
high-intensity classes are commonly only RBCs and a liquid
background. Therefore, we need to find three global thresh-
old values to segment the classes in a fast and accurate man-
ner.

Fast and accurate are two of Otsu’s strengths making this
method a popular technique for separating objects and back-
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Fig. 3. The proposed scheme for extracting the candidate patches.

Fig. 4. Object intensity groups of a thin blood film. (a) A green channel from an RGB image, (b) grouping the intensity of an
image into three intensity groups, and (c) the histogram of the image.

grounds in an image. The method obtains one or more global
threshold values utilized to separate their objects by calcu-
lating the variance of intraclass intensity. The modified Otsu
method (Memeu et al. 2013) has been applied to segment par-
asites, RBCs, and background on a microscopy image. How-
ever, this method has low accuracy since the image contains
a significantly small low- or high-intensity area. Thus, we pro-
posed a technique to find the optimum global threshold val-
ues on the modified Otsu method. The steps of the modified
Otsu method are shown in Fig. 5 (Memeu et al. 2013). T0 and
T1 are global threshold values to threshold RBCs and low-
intensity objects, including parasites and artifacts. H1 is a set
of the first until T0 of H0.

As previously mentioned, regarding the limitation of T1,
we proposed a technique to find the optimum global thresh-
old value (T2). The general steps are shown in Fig. 6, and the
detailed steps are explained as follows: the first step was to
calculate a C graph. The C graph was constructed by summing
the mean and standard deviation of each three points of H1.
The second step was to calculate a UN and the derivative of the
UN. The UN was a binary pattern of C elements thresholded by
the average of C. Finally, T2 was defined by the last location
of the UN element having one value. UN required an update
to avoid missed RBC intensity predictions iteratively using

Algorithm 1. The next step was to threshold the input image
with the global threshold value (T2) to generate the candidate
parasite areas. Finally, each center of the candidate area was
calculated to generate the patch-sized 80 × 80 pixels. This
number was obtained by observing the RBC size.

2.2.2. Balancing parasite patch candidates

The output of previous step is parasite patch candidates.
The candidates were determined only by intensity feature.
Consequently, other objects similar in intensity to parasites,
such as dust and pellets, were also recognized as parasites.
These objects were called as artifacts. An object classifica-
tion step is needed to eliminate these artifacts. However, be-
cause the number of artifacts is far more than parasites, the
resulting patch is not balanced between parasites and arti-
facts. These unbalanced classes would worsen the statically
learning models in classification because the trained model
was biased towards the majority class (Krawczyk 2016). Var-
ious strategies have been conducted to tackle the issues of
unbalanced data in the last decade (Kaur et al. 2019). Our
study applied one of the earliest and most popular algorithms
in oversampling, namely the synthetic minority oversam-
pling technique (SMOTE) (Chawla et al. 2011), to balance our
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Fig. 5. Block diagram of the modified Otsu method (Memeu et al. 2013).

Fig. 6. Diagram block of finding the optimum global threshold value.

Fig. 7. SMOTE illustration in generating the new feature vec-
tor.

patch classes. SMOTE implemented the K-nearest neighbors’
algorithm to generate a synthetic minority class observation.
Then, the observations of the minority class were added con-
tinuously until the classes were balanced as illustrated in Fig.
7. There are five steps in the SMOTE process (Chawla et al.
2011), namely,

1. Identifying the feature vector and its nearest neighbor.
2. Calculating the difference between the feature vector and

a chosen nearest neighbor.
3. Multiplying the difference with a random number be-

tween 0 and 1.
4. Determining a new point on the line segment by adding

the random number to the feature vector.
5. Repeating the process for identified feature vectors.

2.2.3. Patch candidate classification (parasite
detection)

After obtaining the balanced parasite patch candidate
classes, we needed to classify the patches into parasites and
artifacts. The data were divided into two proportions, includ-
ing training and testing, with a ratio of 8:2. Several light DL

models for image classification were observed in this step to
find the best model for parasite patch detection. The models
were GoogleNet (Szegedy et al. 2015), DenseNet121(Huang et
al. 2017), MobileNet V2 (Sandler et al. 2018), MnasNet (Tan
et al. 2019), ShuffleNet v2 (Ma et al. 2018), and ResNet50 (He
et al. 2016). The best model was applied as artifact patch re-
moval. Some identical pre-processing steps were conducted
in every training step in these models. The steps were aug-
mentation and normalization. The detail of these steps is ex-
plained as follows:

We constructed a simple augmentation scheme so that the
generated images were unique in every epoch but had no
substantial difference from the original. We used horizontal
and vertical flips and some affine techniques, such as scaling,
shearing, and rotating. The flow of the augmentation scheme
is presented in Pseudocode 1. After augmenting the image,
the color image was normalized by the normalization proce-
dure used in PyTorch n.d.-b.

We trained the models using PyTorch (PyTorch n.d.-a) li-
brary. We loaded 32 patches for each epoch for training
the model. A standard averaged stochastic gradient descent
technique was applied to optimize the training process with
learning rate and momentum set to 0.001 and 0.9. The learn-
ing rate was reduced by 0.1 when the training processed
plateaus. We used a graphics processing unit built-in GeForce
GTX 1050Ti manufactured by NVIDIA to speed up the training
process, which required high computations when training DL
models. The trained model could smoothly run to predict an
image on low-resource client devices. Generally, the model
was trained once or more depending on the model’s perfor-
mance in the real world. The output of these processes was
patch candidates. Our detection approach was compared to
two famous DL models for object detection, namely faster
R-CNN (Ren et al. 2017) and Yolo v5s (van Rijthoven et al.
2018).

2.2.4. Patch segmentation (parasite
segmentation)

After we got a patch classified as a parasite patch or re-
gion of interest (ROI) of the parasite, we segmented it using
DL techniques for semantic segmentation. In this section, we
employed five DL models to show the difference between ap-
plying ROI in the segmenting process and not applying it. The
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Algorithm 1.

j <= the position of nonzeros component of UN’

While st is 0

For i = 1, 2, 3,…, n − 1/do

If subtraction of UN’ (j(i)) by UN’ (j(i + 1)) is −2/do

If subtraction of j(i + 1) by j(i) is more than 0.2 of z and

STD of C on j(i) up to j(i + 1) component is more than STD of C on the first up to j(i + 1)/do

• Update UN by carrying the first until the j(i) component of UN

• st <= 1

STD = standard deviation

n = the number of j component

z = the number of H1 component

Pseudocode 1. Augmentation scheme.

INITIALIZE i = 0

DO FOR all images in the data training

INITIALIZE Flip_method = choose randomly one of {horizontal, vertical}

INITIALIZE Afine_methods =
{Scale: weight Scale ← randomly selected for each axis from 0.9 to 1.1,

Translate: weight Scale ← randomly selected for each the axis from −0.01 to 0.01,

Shear: weight Scale ← randomly selected from −0.5 to 0.5,

Rotate: weight Scale ← randomly selected from −3 to 3}

INITIALIZE Lamda = randomly CHOOSE half of an array of 0 to the number of images

INPUT the next image

Image ←Flip_method (Image)

IF i in lamda THEN

Image ← Image Afine_methods (Image)

models were UNet (Ronneberger et al. 2015), Res-UNet (He et
al. 2016), ResFCN (Zhu et al. 2020), DeepLabV3 (Chen et al.
2018a), and DeepLabV3+ (Chen et al. 2018a). The training pro-
cesses were similar to the patch candidate classification pro-
cess, such as resizing, augmenting, normalizing, and trans-
ferring learning. The output of this process was segmented
parasites.

2.3. Performance evaluation
Three performance evaluations that can represent the per-

formance of our goal are precision, recall, and F1-score. Pre-
cision defines how the system or model successfully detects
positive class predictions that actually belong to the positive
class. Recall defines how the system successfully detects the
number of positive class predictions made out of all positive
examples in all patch candidates. Meanwhile, F1-score deliv-
ers a performance score that balances both the concern of
precision and recall. In addition, this study also considers
the performance of computational time, representing high
computations to detect the parasites. Precision, recall and F1-
score are mathematically formulated in the eqs. 1, 2, and 3
(Chibuta and Acar 2020). The output is either a parasite (+ve)
or non-parasite (−ve), with only two classes of detection and
segmentation class.

� True positive (TP): prediction is +ve, and X is a parasite;
we want that

� True negative (TN): prediction is −ve, and X is a non-
parasite; we want that too

� False positive (FP): prediction is +ve, and X is non-
parasite; false alarm, bad

� False negative (FN): prediction is −ve, and X a parasite; the
worst

Precision = TP
TP + FP

(1)

Recall = TP
TP + FN

(2)

F1 = 2∗Precision∗Recall
Precision + Recall

(3)

3. Results and discussion
This study proposes a hybrid scheme to detect and segment

malaria parasites by combining double Otsu optimization,
machine learning, and DL techniques. A method of optimiz-
ing the double Otsu to find the global threshold value for
parasites is introduced in this work to generate patch can-
didates. This strategy aims to overcome the limitation of our
dataset, including a small dataset containing many artifacts.
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Table 1. Performance comparison of the proposed method (optimized double
Otsu) with previous works in generating patch candidates.

Methods TP FN FP Time (s) Sensitivity (%)

Nugroho et al. (2017) 569 122 1340 0.489 82.3

Memeu et al. (2013) 677 14 43 678 0.039 98

Proposed method 688 3 3555 0.073 99.6

Fig. 8. (a) Comparison results of applying original global thresholding method (Memeu et al. 2013) on an image, (b) T0 and
T1 on histogram of microscopic image, (c) generated patch candidates of Memeu et al. (2013), (d) applying optimized global
thresholding method on an image, (e) T0, T1, and T2 on histogram of microscopic image, and (f) generated patch candidates of
the proposed method.

Fig. 9. Samples of the patch augmentation result, (a) the original patches and (b) the augmented patches.

This section presents results of each step of our scheme. The
proposed scheme consists of four steps, which are extraction,
balancing, classification of parasite patch candidates (para-
site detection), and parasite segmentation.

In extracting parasite patch candidates, we proposed an op-
timization of the previous global threshold value to improve

the accuracy. The global threshold value was originally pro-
posed by Memeu et al. (2013) to segment objects with a simi-
lar intensity to the parasite. However, Memeu et al. (2013) ap-
plied the first Otsu to obtain the first global threshold value
(T0) for determination of RBC’s intensity. Moreover, the sec-
ond Otsu was applied to obtain the second global threshold
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Fig. 10. The comparison results of the model’s performance
to recognize the parasite patches.

value (T1) for determination of the parasite’s intensity. Con-
sequently, these rules are unsuitable for our dataset, with a
wide RBC intensity range. As a result, implementing Memeu
et al. (2013) on our dataset yielded a high FP of 43 678, as
shown in Table 1. An example of segmented objects obtained
by T1 is shown in Fig. 8a indicated by green contours. How-
ever, the segmented objects are not only the parasites but also
some clumped RBCs. It is because the second threshold value
(T1) is still within the intensity range of the RBC, as shown
in Fig. 8b. As a result, the generated patches are massive, as
shown in Fig. 8c.

After using our optimized method, the sensitivity can be
increased from 98% to 99.6%. In order words, there were only
three parasites missed out of 691 parasites. Moreover, our
proposed method successfully suppressed the number of FPs
from 43 678 to 3555 but is still higher than by Nugroho et al.
(2017). The objects can be segmented more accurately (Fig.
8d) because the optimized second threshold value (T2) lies
at the edge of parasite’s and RBC’s intensities, as shown in
Fig. 8e. As a result, the generated patches successfully show
more accurate parasites and significantly reduce FP parasite
patches.

The generated patches as the output of this process still
contained many FPs. Therefore, we needed to eliminate it
using a DL technique for image classification. Furthermore,
because the generated patches contained too many FP com-
pared to the parasites, we should balance them to avoid
the trained model being biased towards the majority class.
Here, we used SMOTE (Chawla et al. 2011) to balance both
classes. The image in the minority class, the parasite, was
augmented to the number of patches in the FP class, 3555.
The samples of the patch augmentation results are shown in
Fig. 9.

After both classes were balanced, we classified them using
DL for image classification techniques. This study explored
six models of DL for image classification, namely, GoogleNet
(Szegedy et al. 2015), DenseNet121(Huang et al. 2017), Mo-

bileNet V2 (Sandler et al. 2018), MnasNet (Tan et al. 2019),
ShuffleNet v2 (Ma et al. 2018), and ResNet50 (He et al. 2016).
This step aimed to find the best DL model for FP reduction
or the end step of parasite detection in thin blood smear
film. These comparative study results are shown in Fig. 10.
F1-score is the most considered performance in selecting the
models because it combines specificity and precision by tak-
ing their harmonic means. Thus, we assume that DenseNet
has the best performance in recognizing parasites and
artifacts.

The proposed hybrid scheme combines double Otsu opti-
mization, machine learning, and DL techniques to improve
the performances of parasite detection and segmentation.
This scheme was also compared with two familiar models
in DL for object detection, namely, Yolo v5 light/small ver-
sion (van Rijthoven et al. 2018) and Faster R-CNN with FPN
ResNet50 (Ren et al. 2017). We limited the performance eval-
uation to three, i.e., sensitivity or recall, precision, and F1-
score. The performance evaluation results of the data train-
ing and testing are shown in Figs. 11a and 11b. Referring to
Fig. 11b, the proposed method has significantly better results
than faster R-CNN (Ren et al. 2017) and relatively better re-
sults than Yolo v5s (van Rijthoven et al. 2018) on the data
testing. However, the proposed method is significantly bet-
ter than both methods in the data training. These results in-
dicate that the proposed method performs better in detecting
malaria parasites in our dataset with a limited number of im-
ages containing many artifacts. It is difficult to distinguish
between parasites and artifacts when observing a small area
due to the fact that certain types of tiny parasites possess
similar characteristics to artifacts, which is the key reason
behind this challenge. Hence, the proposed method enlarges
the area of patches up to RBC size when a patch is more petite
than RBC size.

The next step was parasite segmentation. This step aimed
to get the morphology of parasites in more detail to support
the advanced malaria parasite studies. After we got the par-
asite location, we segmented it using DL models for seman-
tic segmentation. We explored five contemporary architec-
tures to segment a parasite on the patch or ROI, and then
we compared it without using ROI. The architectures were
UNet (Ronneberger et al. 2015), Res-UNet (He et al. 2016), Res-
FCN (Zhu et al. 2020), DeepLabV3 (Chen et al. 2018a), and
DeepLabV3+ (Chen et al. 2018a). The comparison results are
depicted in Fig. 12. The proposed scheme performs better
in all parameter comparisons than the previous. It implies
that finding ROI or object detection in the beginning step
of parasite segmentation improves the performances of all
algorithms compared without finding ROI. Analyzing an im-
age pixel by pixel is more difficult than analyzing it patch by
patch since certain parasites show similar characteristics as
artifacts when observed pixel by pixel. Our hypotheses are
proven in the comparison results.

4. Conclusion
This study develops a hybrid scheme to detect and seg-

ment malaria parasites by combining double Otsu optimiza-
tion method and DL techniques. An optimized double Otsu
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Fig. 11. The performance result comparison of the proposed and two previous methods, (a) on the training dataset and (b) on
the testing dataset.

Fig. 12. The comparison results of with and without using ROI in segmenting parasites using deep learning techniques for
semantic segmentation.

method for generating malaria parasite patch candidates
was proposed. The parasites were then recognized and seg-
mented using DL approaches. Having tested on the Plas-
moID dataset containing 691 malaria parasites, the proposed
scheme successfully achieved an F1-score of 0.91 for par-
asite detection. The proposed scheme also outperformed
original semantic segmentation methods in terms of sen-
sitivity, specificity, and F1-score for parasite segmentation.
This finding indicates that the proposed scheme has a po-
tential to be implemented in the malaria computer-aided
detection system. In the next work, an advance of opti-
mized local threshold method can be further developed
for the microscopic images consisting severe luminance
noises.
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