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Abstract
The diversity of insect parasitoids (Hymenoptera) has long been thought to be anomalous because it
doesn’t appear to increase rapidly with decreasing latitude. However, due to the presence of undiscov-
ered cryptic species and the under-sampling of hyper-diverse tropical areas, such apparently anoma-
lous gradients may, in fact, be artifacts of limited geographic and taxonomic sampling. We attempted
to circumvent such taxonomic impediments by elucidating a diversity/latitude relationship for
parasitoid wasps, using publicly available DNA sequences to quantify diversity (via a species proxy
molecular operational taxonomic unit (the DNA Barcode Index Number) and phylogenetic diversity)
across a latitudinal gradient of ∼5000 km. We compared these diversity values to the abiotic factors
(temperature and precipitation) that may drive the diversity/latitude relationship. We found no
significant relationship between either diversity measure with latitude or with the environmental
variables. Although ours is the first work to enumerate different DNA-based measures of parasitoid
diversity across this geographic scale in a standardized fashion using publicly available sequences,
further standardized collections over long time periods and a rapid movement of sequences into the
public arena are needed to facilitate the further testing of macroecological trends elucidated with
public DNA sequence libraries.
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Introduction

Latitudinal diversity gradients
For many taxa, there is a negative relationship between biodiversity and latitude (Willig 2001) caused
by a combination of climate, energy, and area (Hillebrand 2004). In particular, the variance of local
abiotic factors greatly influences the species richness in a specific region (Willig 2001, p. 707). For
example, some highly diverse tropical localities are expected to be characterized by more favourable
and stable environmental conditions with high solar insolation and warm temperature and low
intra-annual variation in temperature and rainfall (Willig 2001; Archibald et al. 2010). Such stability
and heat are important if kinetics, the effects of temperature on ecological and evolutionary rates, is
the most important factor determining species diversity (Brown 2014). Although a general consensus
on which hypotheses best explain such latitudinal diversity gradients has not been reached, plausible
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historical and ecological hypotheses for these phenomena include: that there is, on average, greater
land surface area in the tropics than in higher latitude regions (Terborgh 1973); that tropical species
have had time to accumulate in any one location for longer time periods compared with higher lati-
tudes (Mittelbach et al. 2007); that the tropics receive more solar radiation (positively correlated with
energy availability, productivity, and biomass (Pianka 1966; Robinson 1966)); that higher latitudes are
characterized by harsh environmental conditions that are more metabolically costly for many organ-
isms (Willig et al. 2003); that organisms able to withstand greater seasonal variation can possess larger
distribution ranges, whereas tropical organisms with lower tolerance to seasonal variation are
restricted to smaller ranges (Rapoport 1975); and finally, that tropical diversity is greater than temper-
ate because higher ambient temperatures can increase speciation rates through shorter generation
times, higher mutation rates, and accelerated selection pressure (Rohde 1992).

Anomalous latitudinal diversity trends in parasitoids
Willig et al. (2003) found that nearly 71% of 135 analyses that had tested latitudinal diversity gradients
showed that diversity was higher in the tropics. A meta-analysis by Hillebrand (2004) surveyed more
than 600 latitudinal diversity gradient studies and found a small number of exceptions (4.3%) to the
general negative relationship. Some of the cases (sawflies and bryophytes) were exceptional as diver-
sity increased with latitude (Kouki et al. 1994; Mateo et al. 2016). Some, such as the bumblebees,
displayed mid-latitude peaks within both North America and Europe (Kerr et al. 2015). However,
many of the exceptions noted were of parasitic insect taxa (Owen and Owen 1974; Willig et al.
2003). In one of the most famous examples, Janzen (1981) reported that the greatest diversity of
Nearctic Ichneumonidae existed between 37.5°N and 42.4°N latitude and that diversity then declined
towards the equator. Skillen et al. (2000) corroborated Janzen’s findings and suggested that the mid-
latitude peak in diversity was wider than originally hypothesised. In the intervening years, multiple
hypotheses have been proposed to explain this anomalous diversity pattern. Janzen and Pond
(1975) proposed the resource fragmentation hypothesis, where because the abundance of any host
species in the tropics is so low, the number of parasitoid species that could successfully locate and
parasitize them would be lower. Rabinowitz and Price (1976) proposed the predation hypothesis, such
that if there were higher predation pressures in the tropics, then we should expect that the immature/
larval stages would be more vulnerable to predation, and therefore tropical parasitoid diversity would be
lower than temperate areas with lower rates of predation. Gauld’s nasty-host hypothesis (Gauld et al.
1992) suggested that tropical herbivores/hosts sequester the noxious secondary metabolites available
in tropical plants against parasitoids in higher quantities than in temperate herbivores/hosts. Thus, the
parasitoid diversity will be lower in the tropics than in temperate areas because of the, on average,
greater toxicity of the tropical herbivores’ tissue. Finally, the interphyletic competition hypothesis sug-
gested that if tropical parasitoid wasps have to compete with other parasitic taxa expected to be more
diverse in the tropics (such as the parasitoid Tachinidae (Diptera) and parasitic nematodes and fungi),
then parasitoid wasp diversity would be lower in the tropics due to this competition for host species
(Eggleton and Gaston 1990).

Doubts about anomalous diversity patterns
Since Janzen’s (1981) work, ichneumonid wasps have been presented as an exception to the general
pattern of diversity increasing towards mid-latitudes (Gaston and Williams 1996; Pimentel and
Pimentel 2007; Gaston and Blackburn 2008). However, some have questioned whether this apparent
exception is a trend actually caused by limits in taxonomic and geographic sampling (Skillen et al.
2000; Willig et al. 2003; Jones et al. 2009; Baselga et al. 2010; Santos and Quicke 2011; Quicke 2012;
Veijalainen et al. 2012). For example, data from comparatively well-studied northern geographic
regions such as North America and Europe (Santos and Quicke 2011) and data gathered over longer
time periods may conflate our understanding of species richness (Willig et al. 2003). Furthermore, as
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we have noted above, there is an extremely large proportion of undescribed species in the Parasitica
with between 75% and 90% of Hymenopteran species remaining to be discovered (LaSalle and
Gauld 1993; Godfray 1994). This taxonomic impediment is accentuated by the fact that investigating
large-scale trends requires the compilation of often incongruous data, but doing so makes direct
comparisons between studies challenging.

Using DNA barcodes to estimate phylogenetic diversity (PD)
As noted by Kress et al. (2015), it can be a challenge to use DNA barcodes (or any single marker) to
capture evolutionary relationships among both divergent and closely related species. However, in a
case where a phylogenetic reconstruction is based on short sequences (such as DNA barcodes), the
strength of taxon relationships can be better estimated with high species density (i.e., the total diver-
sity included) (Smith et al. 2009). Consequently, there are a growing number of examples where bar-
coding loci have been used to calculate PD. For example, the botanical community has made routine
use of the DNA barcode loci for measures of PD (Hardy and Senterre 2007; Swenson et al. 2012),
whereas the animal barcoding locus (COI) has been used in an increasing number of cases (Smith
et al. 2005, 2009, 2014, 2017; Smith and Fisher 2009; Abrahamczyk et al. 2014). In some cases, a suf-
ficient taxonomic and systematic framework existed to test the barcode measure PD values against a
more in-depth phylogeny and when tested, the trends measured did not differ (Smith et al. 2014).
In another case, Abrahamczyk et al. (2014) found that when they compared phylogenetic measures
of diversity derived from a four-loci phylogeny versus a COI only (i.e., a DNA barcode) phylogeny
the trends they produced were highly correlated and uncovered the same relationships between
PD and latitude. Finally, others (Faith and Baker 2006) have noted that using PD from barcoding data
allows the researcher to use the database without the sometimes contentious use of barcodes as species
proxies or designations.

The DNA barcode region from COI is not without phylogenetic signal. For instance, Quicke et al.
(2012) showed that phylogenetic analyses of the DNA barcode region recovered several morphologi-
cally recognized subfamilies of Ichneuomoidea (the superfamily containing most of our sequences) as
monophyletic. This suggests that, in some cases, there is sufficient phylogenetic signal in COI to place
sequences to subfamily and genus. Furthermore, we note that it should be recognised that taxonomi-
cally erected species hypotheses groups are, in themselves, hypotheses. Indeed, as hypotheses, species
names and taxonomic groups will, and do, change. For example, we have known for years that the
commonly used group of Hymenoptera “Symphyta” is actually paraphyletic (Song et al. 2016) and
the recent systematic examination of the parasitoid wasp tribe, the Cryptini, revealed previously
un-appreciated subfamilies hiding within that name (Santos 2017). Thus, testing one form of identi-
fication information against another is not a test of an unknown (the sequence data) against a state-
ment of truth (the taxonomic hypothesis). We feel that by using barcode index numbers (BINs) and
phylogenetic measures of diversity, our diversity measurements are more transparent to taxonomic
uncertainty and robust to future re-testing (Mace et al. 2003; Smith et al. 2017). In the case of the
Parasitica this is particularly important as these parasitoids are frequently exposed to taxonomic
impediments (Lovejoy et al. 2010; Smith 2012). In some groups, such as the diverse subfamily
Cryptinae, authors have described the “ubiquity of morphological homoplasy” (Santos 2017) that
plagues and slows morphological determinations of species boundaries. Thus, analyses of diversity
based on barcodes can be completed both before formal species identifications or descriptions are fin-
ished, and after. Indeed, in some cases where integrative taxonomic analyses that included DNA and
morphological analyses were conducted coincidentally, it was found that barcodes alone would have
recognized more than 97% of the species in the studies (Fernandez-Triana et al. 2011).
Furthermore, because the data are public such analyses are directly available to interested taxonomists
in the future (Stahlhut et al. 2013).
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Objectives
Our objective was to test a contentious macroecological trend, anomalous patterns of latitudinal
diversity, with publicly available data from a diverse taxonomic group, the Parasitica, or parasitoid
wasps. It would be very interesting to compare and contrast our findings with these data once a more
complete formal identification of all specimens has been completed—however, this is beyond the
scope of this single research paper. Thus, our analysis should be considered as an exploratory first step
into public data, rather than a fully integrative taxonomy (Agnarsson and Kuntner 2007). Our princi-
pal objective was to investigate what latitudinal diversity pattern(s) in the Parasitica was evident when
diversity was enumerated using publicly available DNA from parasitoids derived from the Barcode of
Life Data System (BOLD) across more than 50° of latitude (∼4.9°–58.7°N). We used two methods to
calculate diversity: a specific type of molecular operational taxonomic unit (MOTU) (Blaxter et al.
2005) called BINs (Ratnasingham and Hebert 2013), and PD (Crozier et al. 2009) derived from
DNA barcodes. From the total number of parasitoid sequences available, we selected a subset for
which we were able to largely control for the type of collection and sequence quality. Using the
barcode-data informed-phylogenetic hypotheses to estimate PD allows us to sidestep the species
problem (Faith and Baker 2006). Furthermore, using the BINs as a species proxy allows us to enumer-
ate “diversity” before formal species designations have been assigned. As latitude itself is not the cause
of the gradient (Heard 1991), but rather a surrogate for gradients of temperature and precipitation, we
used public data from the WorldClim data set (Hijmans et al. 2005) to compare our diversity
measures with mean annual temperature and total annual precipitation. The total abiotic variables
available from the WorldClim data set include a variety of measures of temperature and precipitation.
If parasitoid diversity was positively correlated with precipitation or temperature, then we expected to
observe a negative correlation with latitude. The departure from the trend of declining diversity with
latitude suggests what Quicke (2012, p. 1) called the “massive under-description of tropical parasitoid
faunas”. What we found did not support the existence of any latitudinal gradient in parasitoid diversity,
which in turn may suggest that the rate of under-description (unappreciated or named diversity—
cryptic or otherwise) is high across latitude. Indeed, our analysis of these publicly available DNA
sequences supports and extends Quicke’s (2012, p. 1) collections-based conclusions that, “the collecting
and processing of museum specimens, and selection of taxa for revision, is woefully inadequate to allow
latitudinal patterns in biology to be analysed”. Our work, conducted on newly collected specimens,
suggests that not only is the processing of museum samples as yet inadequate to analyze diversity
patterns, the de novo collections in the field also require greater emphasis. Although one of our principal
conclusions is that much work remains to be done, our work demonstrates the value in completing
these analyses using publicly available DNA sequence libraries to test macroecological hypotheses a
priori to the formal species descriptions and designations on the specimens from which those sequences
were derived.

Materials and methods

Data collection and molecular analyses
To test our predictions, we used a subset of publicly available DNA barcodes across a large latitudinal
gradient. It is well known that different trapping methods recover different impressions of an ecologi-
cal community (Noyes 1989b). Collections made in different locations, via different methods, may not
be able to detect or differentiate site differences from trap differences (Veijalainen et al. 2012).
We have tried to avoid this potential problem by restricting our analysis to principally those publicly
available sequences collected with only a small number of collection methodologies (principally
Malaise traps, Supplementary Material 1). Our control for vagaries in collection methods reduced
the total data set of nearly 10 000 publicly available parasitoid DNA sequences to only those for which
we knew something about their field collections and methods (i.e., those principally collected from
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field studies by one of us (MAS)) (Fig. 1). Within these locations, we restricted our specimen selection
at all sampling localities, primarily to those collected using Malaise traps (Townes and Arbor 1962)
although there were a small number collected using yellow pan traps and active searching
(355/4785 or ∼7%, Supplementary Material 1).

As we were responsible for the collection of the publicly available sequences used here, we can briefly
report some collection details. At each sampling location, various standard variables were recorded
(time on site (arrival and departure), temperature (°C), weather conditions and a brief description
of the area (dominant plant species, ground cover), geographic coordinates, and a high-resolution
panoramic GigaPan photograph of each locality (Supplementary Material 2) to capture details
of the local, small-scale botanical species richness and habitat complexity). Upon collection, all
specimens were preserved in 95% ethanol for sorting and DNA extraction. Specimens for each locality
were selected randomly from traps for barcoding as described in Stahlhut et al. (2013). DNA was
extracted and sequences generated using standard methods detailed elsewhere (Smith et al. 2006,
2007, 2008). We limited our analysis here to higher quality, overlapping sequences and thus we
only included those COI sequences at least 300 bp long that had <1% ambiguities. Irrespective of
our role in establishing the initial collections, all specimens and sequence data were and are publicly
available on BOLD (Supplementary Material 3). BOLD (Ratnasingham and Hebert 2007) assembles
molecular, morphological, and distributional data and (for animals) predominantly uses COI as a
standardized molecular marker. BOLD also implements a BIN system (Ratnasingham and Hebert
2013) to cluster barcode sequences with an algorithm that uses graph theoretic methods to create
MOTUs or BINs (Ratnasingham and Hebert 2013). This was done without any prior taxonomic
knowledge, and thus, in the absence of any other taxonomic hypothesis, we used these BINs as proxies
for species.

Fig. 1. Collection localities for parasitoid specimens analysed in this study. The map was constructed using SimpleMappr (simplemappr.net).
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Sample size for estimating diversity
Four thousand seven hundred and eighty-five (4785) Hymenopteran parasitoid specimens from the
collection sites met our selection criteria (i.e., publicly available, high-quality sequences derived from
principally Malaise trapped individuals; Supplementary Material 1). This 4.785K data set acted as
our full data set referred to in the results and discussions. As the number of specimens varied among
sites, we used several methods to control for differential sample size among these sites: first, testing the
residuals of the relationship between PD or BIN diversity and sample size; and second, randomly
selecting a subset of specimens from each site based on the site with lowest number of sequences
(Supplementary Materials 1, 4). For simplicity, we restrict the Results and Discussion to principally
the large data set; however, the results for these two sample size controls are presented in the
Supplementary Materials 4, 9, 10.

Environmental data
We derived estimates of temperature and precipitation for each site based on the 1 km2 WorldClim
V1 data set (Hijmans et al. 2005) that we extracted using DIVA-GIS V.7.5 (Hijmans et al. 2012).
We present here the most general composite measures of each mean annual temperature and total
annual precipitation; however, the response of our biodiversity measures to the full range of abiotic
variables can be seen in Supplementary Materials 5 and 6.

Diversity analyses
Barcode sequences >300 bp in length were downloaded from BOLD and aligned using MUSCLE
V.3.8.31 (Edgar 2004); the alignment was verified by eye. Sequences were used to estimate the diver-
sity of parasitoids using both molecular operational taxonomic units (BINs) and phylogenetic-based
measures of diversity (PD). Two of the most prevalent definitions for PD in the literature are (1) com-
munity PD (Crozier et al. 2009; Cadotte et al. 2010), the sum of all phylogenetic branches connecting
species within a community; and (2) Faith’s PD (Faith 1994), the sum of all phylogenetic branches
connecting species within a community plus the root from a larger regional phylogeny. We calculated
PD using the picante package (Kembel et al. 2010) in R version 3.1 (R Core Team 2016). We
calculated both values, but for simplicity present only Faith’s PD here (community PD values can
be found in the Supplementary Material 10).

The best substitution model was selected in MEGA V.6 (Tamura et al. 2013) for the large data
set using the Bayesian Information Criterion (BIC) where the model with the lowest BIC score was
considered the best substitution pattern and then used to create a maximum likelihood (ML) tree
(Felsenstein 1981).

To calculate Faith’s PD, the same parameters were used as detailed above; however, the ML tree was
rooted with an outgroup containing two Diptera, Hemiptera, and Lepidoptera sequences from
BOLD in MEGA (Supplementary Material 7) that we selected to emulate those used by Heraty
et al. (2011).

Linear regressions of the two diversity estimates for all the samples from the eight collection sites
(4875 specimens) were conducted against latitude, mean annual temperature, and total annual pre-
cipitation. To aid in visualising these relationships, we smoothed the points using the non-parametric
LOESS method (Cleveland and Loader 1996). Three further comparisons where we attempted to con-
trol for the range of sample sizes across these eight sites (randomly sampled subset of 2240 specimens,
with the residuals of each diversity estimate compared with sample size and community estimate of
PD) are detailed in Supplementary Material 8.
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Results
Prior to our analysis, all of the DNA sequences analysed here were already public and could be
retrieved and examined in BOLD. However, we have compiled them here into a specific data set that
interested readers may consult (DOI: 10.5883/DS-TIEPARIS) or access via GenBank (ncbi.nlm.nih.
gov/genbank/); accession numbers can be found in Supplementary Materials 3, 4, and 7.

The substitution model with the lowest BIC score was the general time reversible (GTR) model
(Nei and Kumar 2000) using a discrete gamma distribution (+G) with five rate categories, and assum-
ing that a certain fraction of sites are evolutionarily invariable (+I), was used for ML tree calculations.
Note that some Hymenopterans included in this analysis displayed a characteristic 6 bp deletion in
the 155th and 156th amino acids of the barcoding region which is within the third internal loop
(Smith et al. 2011, p. 3; Quicke et al. 2012; Hansson et al. 2015). These deletions were included in
the ML tree creation.

Diversity measures
Both BIN and Faith’s PD diversity were significantly positively related (R2= 0.733, F= 16.46,
p= 0.007, Fig. 2, Supplementary Materials 8–10).

Diversity vs. latitude
Faith’s PD and BIN diversity showed no significant relationship with latitude (R2= 0.267, F= 2.19,
p> 0.05; R2= 0.0002, F= 0.0011, p> 0.05) (Figs. 2A, 2B).

Diversity vs. environmental variables
Both BIN and PD diversity declined with mean annual temperature (R2= 0.335, F= 2.27, p > 0.05;
R2= 0.006, F= 1.05, p > 0.05) (Figs. 2C, 2D). However, when we controlled for the extremely large
sample size at the most northerly sampled location (either by using the residuals of the relationship
between sample size and diversity or by using a randomly selected subset of the data
(Supplementary Materials 8–10)), there was no significant relationship between either diversity mea-
sure and mean annual temperature (R2 =−0.165, F = 0.01, p > 0.05; R2 =−0.053, F = 0.65,
p> 0.05).

Diversity appeared to decline with total annual precipitation using the full data set (though the
apparent decline was not significant) (R2 =−0.035, F = 0.76, p > 0.05; R2=−0.146, F = 0.111,
p > 0.05). Indeed, when we controlled for sample size, the relationship became slightly positive
(Supplementary Materials 8–10).

Discussion
We calculated DNA-derived diversity from publicly available sequences as a means to avoid the taxo-
nomic impediment present within the Parasitica, in an effort to examine macroecological patterns of
latitude/diversity for parasitoid wasps (Willig 2001; Willig et al. 2003; Jones et al. 2009; Santos and
Quicke 2011). We found that whether diversity was estimated using molecular operational taxonomic
units (BINs) or phylogenetic estimates of diversity (PD), there was no significant peak in diversity
across latitude. One potential explanation for this is that the rates of under-description outlined by
Quicke (2012) are high not only in the tropics but also across latitude. If this were the case, we should
expect that estimating latitudinal patterns of diversity within parasitoids would require a massive
influx of new samples and sites. Adding new sites or localities that are immediately connected to
standardized molecular diversity estimates (such as the School Malaise Trap Program described by
Steinke et al. 2017) would likely provide a formidable addition to such a strategy.
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Latitudinal trends in diversity for parasitoids have previously shown multiple patterns including
declines in diversity with latitude (Hespenheide 1979; Noyes 1989a; Gaston and Gauld 1993; Gaston
2000), mid-latitude peaks (Owen and Owen 1974; Janzen and Pond 1975; Janzen 1981; Quicke and
Kruft 1995; Skillen et al. 2000), and the absence of any cline (Veijalainen et al. 2012). Our estimates
of these macroecological patterns used publicly available records to create DNA-based diversity esti-
mates based upon specimens collected using standardized methods. To our knowledge, this is the first
work to enumerate different DNA-based measures of parasitoid diversity across this geographic scale.
Although our geographic sampling was broad (more than 50° latitude), our individually based DNA
estimates may still have been affected by the small sample size. However, the effect of under-sampling
could decrease as the size of DNA-based libraries associated with high-quality metadata increases.
Thus, as libraries continue to grow, this type of investigation will be one that warrants replication.

Fig. 2. Trends in parasitoid diversity measured with phylogenetic diversity (PD) and Barcode Index Numbers
(BINs) derived from DNA barcodes compared with latitude, mean annual temperature, and total annual precipi-
tation. Whether estimated by PD or BIN, we did not find significant changes in parasitoid diversity across latitude
(A and B). Parasitoid diversity did not significantly change with mean annual temperature (C and D) or total
annual precipitation (E and F). Parasitoid diversity measured using PD was significantly related to diversity
measured using BINs (G).
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As pointed out by Stahlhut et al. (2013, p. 4), it is our hope that specimens from our study, “receive
more attention from specialists in the future, and the availability of DNA barcodes will make it easier
for taxonomists to delimit and perhaps even describe species in this collection via integrative
methods”.

Biotic factors
BIN diversity was not correlated with any measured environmental variable. One potential explana-
tion for this trend is that variables such as competition, predation, or resource availability may play
a larger role in determining how many parasitoid species are able to persist in certain locations than
the abiotic factors alone (Timms et al. 2016). Interestingly, the lack of a diversity cline across latitude
was similar to the results of Veijalainen et al. (2012), who found that species diversity of Neotropical
Orthocentrinae (177) was roughly similar to the known species found in Nearctic regions (151). As we
do here, they speculated that increased sampling would yield a greater number of species in each
region. Indeed, the problem of under-sampling is not uncommon to studies of terrestrial arthropod
diversity or parasitoids in particular.

Abiotic factors
Due to their effects on insect physiology and productivity, temperature and precipitation are abiotic
factors expected to limit diversity (Srivastava and Lawton 1998). For example, Shapiro and
Pickering (2000) found that moisture availability (rainfall) was a key factor in understanding parasit-
oid activity. In particular, the activity and community structure of the Ichneumonidae were restricted
by hot, dry conditions. Indeed, support for hymenopteran diversity gradients being driven by climatic
seasonality, and in particular precipitation, is persistent in the literature (Abrahamczyk et al. 2010,
2011; Archibald et al. 2010). However, Brown (2014) emphasized that species diversity increased with
temperature much more rapidly than with species abundance or net primary production, and that
kinetics may be the most important factor in accounting for diversity gradients (Brown 2014).
The role that time plays in entrenching (or reversing) such abiotic selective pressures is critical
(and difficult to test) (i.e., moving from the ecological observation that activity is restricted by climatic
seasonality to concluding evolutionary patterns across degrees of latitude requires that such seasonal-
ity is not recent).

Therefore, with the assumption that latitude is a surrogate for temperature and precipitation gra-
dients, we predicted an inverse relationship between parasitoid diversity (BINs and PD) and latitude.
As expected, estimates of PD increased linearly with BINs for all the sequences available from the
sampling sites. However, neither diversity measure varied significantly across latitude mean annual
temperature or total annual precipitation. We found neither the more commonly reported negative
relationship nor any anomalous mid-latitude peak. For example, within the Ontario, Canada, sites
we included in this analysis, there were large, evident changes in diversity not predicted by latitude
or the co-varying abiotic factors (Fig. 2). We note that sampling intensity across latitude clearly
remains an issue that might impede our understanding of macroecological patterns within the
Parasitica. In fact, in the large data set, we found that diversity appeared to actually increase (albeit
non-significantly) with latitude. This pattern was no longer apparent when we controlled for the sam-
pling intensity by removing the expected relationship between diversity and sample size. A similar
observation of an unexpectedly high diversity hotspot at high(er) latitudes was noted by Fernandez-
Triana et al. (2016) when they reported that Ottawa (Ontario, Canada) was a hotspot of parasitoid
diversity. They concluded that this “hotspot” was because of the sampling intensity related to both
habitat heterogeneity and the “relatively comprehensive taxonomic studies” completed by the emi-
nent parasitoid taxonomists living in Ottawa while working at the Canadian National Collection of
Insects, Arachnids, and Nematodes (CNC) (Fernandez-Triana et al. 2016, p. 7).
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Advantages for using public DNA records to assess diversity
The use of operational taxonomic units (BINs) has been shown to be a rapid and effective method
for species identification for many hymenopteran communities (Smith et al. 2005, 2008, 2011;
Quicke et al. 2012; Veijalainen et al. 2012; Stahlhut et al. 2013). Although BINs are not necessarily
coincident with species boundaries, they display similar patterns in richness and turnover that can
be helpful in short-term studies (Smith et al. 2005, 2017) and in examining diversity patterns for spe-
cies within the taxonomic impediment (Smith et al. 2006, 2007, 2008). Thus, our estimates of diversity
are likely more sensitive to the existence of morphologically cryptic species than others based on clas-
sically named diversity. However, like most other examinations of parasitoid diversity, our sampling
is unlikely to be a complete representation of the total parasitoid diversity present at any one of the
sites used here (Smith et al. 2008; Stahlhut et al. 2013).

Ultimately, due to the frequent occurrence of cryptic, and undescribed, species in the parasitic
Hymenoptera, integrating studies and data sets that incorporate DNA barcode data to help delineate
species allows us to make stronger tests for latitudinal diversity gradients. The increasing number of
publicly available and georeferenced DNA barcode sequences available on BOLD (Ratnasingham
and Hebert 2007) will only strengthen this tool. Gratton et al. (2017) recently tested the use of geore-
ferenced GenBank vertebrate sequence data to construct robust phylogeographic hypotheses and con-
cluded that one of the principal limitations of data on GenBank was the small proportion that was
georeferenced (6.2% in their analysis). Another recent example of testing large macroecological pat-
terns in genetic diversity across space was recently presented by Miraldo et al. (2016) who used a sub-
set of georeferenced DNA sequence records from GenBank and BOLD to test latitudinal patterns of
genetic diversity for amphibians and mammals. Although an interesting preliminary analysis, their
study did not control for any sort of collection strategy or method. Such a control would not be easily
possible in GenBank; however, the greater standards in metadata on BOLD do permit such specific
specimen selection.

Conclusions
Although parasitoid insects were once considered a textbook example of anomalous diversity/
latitudes gradients, it is increasingly accepted that more research is required to validate such a
hypothesis (Willig 2001; Willig et al. 2003; Jones et al. 2009; Veijalainen et al. 2012). In particular,
deviations from expected changes in diversity with latitude are required due to species under-
representation across latitudes (Santos and Quicke 2011). Our work supports this conclusion and
represents a useful scaffold for future research to investigate macroecological trends through the
use of publicly available and georeferenced DNA sequences. The public availability of specimens
and sequence records in BOLD permits the transparent comparison of our work and future exami-
nations to include all details analysed here in subsequent work. Although including wide latitude
and many specimens, our results do not identify any clear significant pattern of parasitoid diversity
across latitude. Further tropical sampling is clearly needed. However, it should be noted that the
accumulation of parasitoid diversity did not reach an asymptote in any of our latitudinal sites.
Indeed, in considering this under-sampling, Rodriguez et al. (2013) noted that to describe and
understand all parasitoid species in any environment would require a massive deployment of com-
prehensive trapping at least an order of magnitude greater than has been attempted to date. Clearly,
our understanding of the relationship between parasitoid diversity and latitude will benefit from
further and novel field collections using standardized methods designed for comparison between
sites. Furthermore, the use of DNA-based diversity estimates will help to ameliorate the taxonomic
impediment that extends from the tropics to the tundra.
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