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Abstract

A Bt soybean has been recently developed, thus, efficiently regulating the populations of major
lepidopteran pests. However, in other cases, these benefits have been reduced or lost because of the
rapid evolution of pest resistance to the Bt toxins in transgenic crops. When pest populations are
exposed to Bt crops and to refuges (non-Bt plants), the evolution of resistance is governed by the
fitness of resistant individuals relative to susceptible individuals for both the presence and
absence of Bt toxins. One major ecological concern regarding the biosafety of Bt crops on the envi-
ronment is their potential effects on non-target organisms, especially predators and parasitoids that
play an important role in pest control. This information is important for supporting insect
resistance management (IRM) programs and for improving agricultural practices in a crop produc-
tion system with Bt plants. Before the use of Bt plants for insect pest control in Brazil is adopted,
IRM programs should be established to ensure the sustainability of this technology for integrated
pest management (IPM). This review presents data on Bf soybean and lepidopteran pests as
well as on the importance of natural enemies as a form of biological control, and applications for
IPM and IRM.

Key words: Bt soybean, lepidopteran pests, natural enemies, integrated pest management, insect
resistance management

Introduction

Genetically modified (GM) plants resistant to insects represent a new insect pest control method for
integrated pest management (IPM) programs in various agroecosystems. These plants are character-
ized by expressing genes of the entomopathogenic bacterium Bacillus thuringiensis Berliner (Bt) that
encode the expression of proteins with insecticidal effects. There are many benefits of using Bt plants
in agriculture, including a more efficient control of insect pests, reducing the use of insecticides, and
facilitating and maintaining populations of natural enemies in the farming areas (

). The use of Bt plants facilitates integration with biological control in IPM programs
and enables more sustainable agricultural practices ( ).
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In 2015, Brazil ranked second only to the USA in the world for biotech crop hectarage, with
44.2 million ha (up from 42.2 million in 2014); the increase in 2015 was 2 million ha, equivalent to
a growth rate of 5%. Brazil commercially planted a soybean stacked with insect resistance and
herbicide tolerance on 11.9 million ha for a third year, increasing from 2.3 million ha in 2013 to
5.2 million ha in 2014 (a fivefold increase) ( ).

As the Cry proteins expressed in the commercialized Bt crops are highly selective and have a narrow
spectrum of activity, they can form an important component of IPM ( ). These protoxins
kill lepidopteran pests because they specifically interact with receptors found in the insect gut and
induce the formation of pores in the apical membrane of the cells, destroying the intestinal tissue,
allowing bacterial septicemia in the hemocoel, and resulting in larval death ( ;

). The protoxins are activated by digestive enzymes in the midgut and bind to spe-
cific receptors in the microvilli of the apical membranes of the columnar cells of the lepidopteran’s gut
( ; ; ). The binding of
Cry toxins to the apical microvillus of the membrane vesicles of the insect determines the specificity
of the Cry toxins ( ). Different proteins have been identified as receptors for Bt in
Lepidoptera and can be highlighted within Lepidoptera, including aminopeptidases (

; ), “cadherin-like protein” ( ; ), and alkaline
phosphatase ( ; ). In addition to the cry genes, some
Bt plants such as corn and cotton express vegetative insecticidal proteins from Bt, which proved effec-
tive in the control of some economically important insect pests.

The Bt soybean MON 87701 X MON 89788 efficiently targets a range of species, including Anticarsia
gemmatalis (velvetbean caterpillar) Hiibner (Lepidoptera: Erebidae) and Chrysodeixis includens (soy-
bean looper) Walker (Lepidoptera: Noctuidae) ( ), but it is not efficient against
Spodoptera spp. (armyworms) ( ).

Some studies have already reported that the adoption of Bt crops leads to a reduction in insecticide
use ( ; ; ), possibly favoring certain non-
target pest outbreaks ( ). Therefore, it is important to understand the direct and indi-
rect impacts of Bt plants on both non-target pest species and their natural enemies. The maintenance
of natural enemies is of paramount importance for preventing phytophagous insects from reaching
population levels capable of causing economic damage ( ). Despite being
important, there are few studies of the interactions between Bt plants and parasitoids of insect pests

( ; )-

Before the use of Bt plants for insect pest control in Brazil is adopted, insect resistance management
(IRM) programs should be established to ensure the sustainability of this technology for IPM. There
is still a need for IRM strategies to be implemented effectively, and mitigation strategies must be
designed for cases in which there is an increased frequency of resistant alleles in the populations of
the target pest in Bt plants. This review presents data on Bt soybean and lepidopteran pests as well
as on the importance of natural enemies as a form of biological control, and applications for IPM
and IRM.

Bt soybean

Early efforts to obtain Bt soybean cultivars showed to be promising alternatives to control defoliating
caterpillars in soybeans. The first report of the successful introgression and expression of a native
crylAb Bt gene in soybeans was published in 1994 ( ), and several more studies on
the subject have since been published.
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produced a transgenic soybean plant with synthetic Bt cryIAc (tic 107) and
described the tissue culture and transformation procedures and the molecular and biotic characteris-
tics of the Bt soybean that was produced. demonstrated a transgenic lineage of the
soybean ‘Jack’, Glycine max (L.) Merrill, expressing a synthetic crylAc gene from B. thuringiensis vari-
ety kurstaki (Jack-Bt), which was evaluated for resistance to four lepidopteran pests in the field:
Helicoverpa zea (corn earworm) Boddie, A. gemmatalis (soybeans caterpillar) Hubner, C. includens
(soybean looper) Walker, and Elasmopalpus lignosellus (lesser cornstalk borer) Zeller, and data from
these experiments suggested that expression of this cryIAc construct in the soybean should provide
adequate levels of resistance to several lepidopteran pests under field conditions.
developed lineages containing the event MON 87701 and expressing the synthetic protein
TIC 107, which is nearly identical to the native CrylAc protein. evaluated the
agronomic performance and chromosomal stability of transgenic homozygous progenies of the soy-
bean [G. max (L.) Merrill] and confirmed the resistance of these plants to A. gemmatalis.

Bt soybean has recently been developed by combining the transformation events MON 87701
(expressing CrylAc protein) and MON 89788 (glyphosate tolerance). This soybean cultivar is
characterized by having the crylAc Bt gene encoding the CrylAc protein and the protein
5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) from Agrobacterium spp. that confers
tolerance to the herbicide glyphosate. The crylAc gene is an exogenous gene from the bacterium
B. thuringiensis kurstaki HD73, which confers to the plant resistance to major soybean caterpillar
pests. The soybean cultivar MON 87701-2 was produced by transfering the cryIAc gene using a gene
promoter rbcS4 control of the species Arabidopsis thaliana. This promoter expresses the characteris-
tics of the gene of interest at high levels in green tissue ( ). The protein sequence is 99%
identical to the CrylAc protein from B. thuringiensis kurstaki. The CrylAc protein is expressed in
leaves, pollen/anthers, seeds, and pods, but not roots. The high-dose expression (25 times the amount
required to kill 99% of a susceptible population) and concentration in the leaves can reach approxi-
mately 450 pg/g of the dry weight ( )

This product was commercially released in Brazil in 2013/2014. Based on the experiences with
Bt maize and cotton, Bt soybean technology is expected to control major Lepidoptera pests.
Considering the ease of Bt soybean cultivation in addition to the increasing problems of caterpillars
faced by Brazilian farmers, it is conceivable that this new technology will be widely adopted

( ).

Lepidopteran pests

Bt soybean offers efficient population regulation of major lepidopteran agricultural pests such as
A. gemmatalis (velvetbean caterpillar) and C. includens (soybean looper), and secondary target pests
such as Heliothis virescens (tobacco budworm) Fabricius, Crocidosema aporema (bean shoot moth)
Walsingham, and Rachiplusia nu (sunflower looper) Guenée ( ).

Caterpillars of the genus Spodoptera have been causing damage to soybean fields in Brazil in recent
years ( ). Within the Spodoptera complex, S. eridania (southern armyworm) Stoll,
S. cosmioides (black armyworm) Walker, and S. frugiperda (fall armyworm) J.E. Smith are prominent
in causing damage. These species have attacked soybeans in central and southern Brazil (

; ). The high potential for the defoliation of soybean plants
( ) and damage to flowers and pods ( ) by Spodoptera
species requires the adoption of control tactics to prevent the loss of grain yield, but there are no data
available in the literature demonstrating the impact of the protein CrylAc on the life history param-
eters of Spodoptera species.
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This information is important due to the threat of pests evolving resistanceto Bt crops (

). According to , S. cosmioides, S. eridania, and S. frugiperda exhibited
low to no susceptibility to MON 87701 X MON 89788 soybean containing the protein CrylAc.
These Spodoptera species showed higher tolerance to the CrylAc protein than some other
Lepidoptera species, such as C. includens, H. virescens, and H. zea ( ).

showed that the Bt transgenic soybean exhibited high efficacy against Helicoverpa
armigera (cotton bollworm) throughout the growing season, whereas it caused low toxicity to
Spodoptera litura (tobacco cutworm), especially in the growth stages during and after anthesis. No
toxicity of the Bt soybeans to Spodoptera exigua (beet armyworm) and Agrotis ypsilon (black
cutworm) larvae was observed. Therefore, planting of Cryl Ac-expressing soybeans will not effectively
manage all key lepidopteran soybean pests in China ( ).

The low toxicity of CrylAc to Spodoptera species can be related to the high genetic variability among
populations and the natural tolerance of insects to different Bt proteins. This was demonstrated for
native populations of S. frugiperda in Mexico, Brazil, and Colombia, which showed differences in
susceptibility to Bt strains due to high genetic variability among populations; a fact that results in
groups lacking receptors for certain Bt proteins and, thus, are insensitive to insecticidal proteins
( ). demonstrated in trials with S. frugiperda that insufficient
and (or) a weak link of the insecticidal protein in the midgut binding sites can also affect the suscep-
tibility to CrylAc, which can also be related to the inactivation of the insecticidal protein by proteases

( )-

Natural enemies

Globally, insecticides are the most widely used control method for reducing damage caused by insect
pests, but they have often been overused ( ). Subsequently, as an alternative to
pesticide use, there has been an increase in the use of biological controls in IPM programs, both
through the release of a large number of natural enemies (applied biological control) and through
the use of cultural practices that preserve extant populations of natural enemies in the crop
( ). Studies have revealed that parasitoids of the order Hymenoptera
can promote the natural control of pests, especially Lepidoptera and Hemiptera ( ).

The consequences of the effects of Bt plants on parasitoids have received attention, and studies have
revealed both positive and negative impacts ( ; ;

). When negative effects on natural enemies have been observed with Bt proteins,
they appear to be due to the poor quality of the host and not the Cry protein ( ).

The safety of several Bt proteins has been verified in tritrophic studies conducted with herbivores
resistant or nonsusceptible to Bt that avoided the problems of prey quality in some other previous

studies ( ). The practice of allowing Bt-resistant hosts to ingest Bt proteins and then
feeding the hosts to natural enemies (both predators and parasitoids) has shown no effects on the
natural enemies ( ; ). However, some reports continue to suggest that
natural enemies may be harmed by Bt proteins ( ), but these reports have been chal-
lenged ( ).

Despite being important, few studies of the interactions between Bt plants and the parasitoids of
insect pests have been performed ( ; ) suggested that
there was no direct effect of Bt soybean (CrylAc) on the biological traits of Euchistos heros or its
egg parasitoid Telenomus podisi. According to , it is important to emphasize

that based on the mode of action of the Bt protein (gut-active), it is unlikely that the CrylAc, found
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in the Bt soybean, would be transferred from S. eridania larvae to adults to eggs. Therefore, Telenomus
remus exposure to CrylAc would be zero or very low (close to zero) in this case, and direct effects are
excluded. Any possible effect would be indirectly associated with the Bt protein insertion.

observed that the predation of nymphs and adults, and the effects on the life cycle of
the predator Podisus nigrispinus were higher on S. frugiperda larvae fed with NuOpal (CrylAc); how-
ever, the total viability of P. nigrispinus was lower when predating on S. frugiperda fed with NuOpal
(transgenic cultivar). Spodoptera frugiperda acquires toxins from transgenic cotton, which can affect its
natural predator P. nigrispinus. A study by showed that the integrated man-
agement of Plutella xylostella is feasible by using the HD1 strain of B. thuringiensis and the predator
P. nigrispinus because the predator showed no preference for infected or healthy P. xylostella larvae
and the strain B. thuringiensis HD1 did not affect the biological characteristics of P. nigrispinus when
fed with infected larvae and water or healthy larvae and a B. thuringiensis suspension.

In a study of interactions among transgenic cotton (CrylAc), H. armigera, and Campoletis chlorideae,

observed that there was a slight reduction in adult weight and fecundity and a
prolongation of the larval period, both before and after parasitization, when the parasitoid was raised
on H. armigera larvae fed on the leaves of transgenic cotton. Survival and development of
C. chlorideae was also poor when H. armigera larvae were fed on the leaves of transgenic cotton.
The adverse effects of transgenic cotton on the survival and development of C. chlorideae were largely
due to early mortality, and also possibly the poor nutritional quality of the H. armigera larvae due to
toxic effects of the transgenic cotton.

Parasitoids are very sensitive to changes in their hosts after the ingestion of toxins, as they usually
complete their development in a single host. When susceptible hosts are treated with Bt toxins, the
possibility of affecting the parasitoids is greater than it affecting the predators, which are often generic
and feed on different prey ( ). suggested that the host quality may
affect parasitoid size, development, and survival. If the host is not able to survive, the parasitoid will
not complete its development ( ).

Management of resistance

defined resistance as the development of an inherited ability of an
organism to tolerate doses of a toxicant that would be lethal to the majority of individuals of the spe-
cies. In this context, the evaluation of the risk of resistance of target and non-target soybean pests
MON 87701 X MON 89788 is of fundamental importance to the establishment of IRM management
strategies. Establishing IRM strategies to prevent or delay the evolution of insect resistance to
GM soybeans is one of the main challenges for the sustainability of this new technology for the IPM
of soybean crops in Brazil.

An important step in the management strategy of IRM practices includes the development of appro-
priate techniques for bioassays to assess the response of target pest populations to the Bt protein by
obtaining lineages of basic plant susceptibility, from which it is possible to identify the diagnostic
doses to be used in monitoring the resistance, allowing a discrimination between susceptible and
resistant phenotypes, and the identification of potential changes in the susceptibility of the population
in response to the selection pressure exerted by the Bt culture ( ). Among the various
IRM strategies that have been proposed, one that is widely used is the high-dose expression of the
insecticidal protein in plant tissues and in planting and maintaining refuge areas with non-Bt plants

( ) ( H H H ). These strategies
are based on two important observations: resistance is a recessive trait, and crosses between resistant
and non-resistant individuals occur at random ( ) ( ).
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2. Most larvae die after
ingestion of Bf plants. |

1. The larvae emerge
and feed on B plants.

5. The offspring reproduce and -
lay their eggs on the Bf plants
and the cycle restarts.

| !

4. The rare resistant
individuals (rr) cross with non- _
resistant (RR) producing
offspring (Rr).

3. Few resistant
individuals (rr) survive.

Basic aspects of resistance management with the high dose and structured refuge strategy.

Refuge areas then supply susceptible individuals to minimize non-random mating among the rare
resistant homozygotes that survive on Bt plants, ensuring that the next generation consists of either
susceptible or heterozygous resistant individuals. These insects are all phenotypically susceptible to
the high-dose plant ( ; ).

For the MON 87701 X MON 89788 soybean, the recommendation of a refuge area (with non-Bt
soybean) of at least 20% of the area planted with MON 87701 X MON 89788 soybean was approved
in Brazil ( ).

The wide use of MON 87701 X MON 89788 by Brazilian producers increases concern of the evolution
of resistance. The main risks for the maintenance of this lineage over time are the failure to observe
the three main foundations of the management strategy used, namely high doses, low frequency of
the gene for resistance, and maintenance of the areas of refuge, according to the recommendations
( 5 ; ). A study by evalu-
ating the efficiency of this lineage in the control of H. armigera indicated that the first two conditions
are present in Brazil. The great concern of the authors the maintenance of the areas of refuge, as these
are not obligatory in Brazil; areas for cultivation of Bt soybean may be an additional challenge for the
management of resistance in the country, because temperatures are higher and the cultivation time is
longer than in temperate areas. The concern with the effects of other factors is not exclusive to Bt soy-
beans, but to all Bt plants. It is extremely important to adopt adequate management procedures in
each region, because it is necessary to consider the differences in geography, climate, size of cultivated
area, number of transgenic species cultivated, biology of insect pests, and spatial and temporal genetic
variability of the target species ( ; ).

The need for transgenic plants expressing different genes is reinforced by the evolution of pest
lineages resistant to Bt plants in the field ( ). Field-evolved resistances in different insect pests
in other regions such as the resistance of Pectinophora gossypiella to CrylAc in Bt cotton in India
( ), the resistance of H. zea to CrylAc in Bt cotton in the USA (

), and the resistance of Diabrotica virgifera to Cry3Bb in Bt corn in the USA (

) have also been reported. In addition, the resistance of S. frugiperda to CrylF in maize
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Fig. 2. The high dose and structured refuge strategy. The parameters for this strategy are as follows: the gene for
resistance occurs at a low frequency in insect populations, the amounts of Bt toxin produced by plants are high
enough to eliminate non-resistant (homozygous recessive) insects, and resistant heterozygotes and resistant indi-
viduals (dominant homozygotes) born in areas with Bt plants randomly interbreed with the non-resistant individ-
uals born in the refuge areas. The purpose of the refuges is to keep individuals susceptible to Bt toxin (i.e., those
that do not have genes for resistance) in the population. Their contribution is the production of adult insects sus-
ceptible to Bt toxin for breeding with resistant homozygous insects, thus, “diluting” the resistance in the popula-
tion. Dispersion out of the refuge areas is necessary for breeding to occur.

Table 1. Pest species with field resistance to Bt plants.

Resistance detected

Pest (year) Crop Country Gene
Helicoverpa zea 2002 Cotton USA crylAc
Busseola fusca 2004 Maize South Africa crylF
Spodoptera frugiperda 2007 Maize Puerto Rico/Brazil crylAc
Pectinophora gossypiella 2009 Cotton India cry3Bbl
Dibarotica virgifera virgifera 2010 Maize USA crylAb
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( ; ) and the resistance of P. gossypiella (Saunders) to CrylAc in cot-
ton ( ) have been reported.

For many researchers, second generation transgenic plants, i.e., those that express two or more Bt tox-
ins, are a more effective option for pest control and also to increase the longevity of transgenic plants
( ; ). In Brazil, for example, studies demonstrated a high efficiency
of the Bt soybean strain DAS-81419-2 (expressing two proteins) in the reduction of damage caused by
A. gemmatalis, C. includens, H. virescens, and S. cosmioides during the vegetative and reproductive

stages ( ). Recent studies have suggested the use of RNA interference as a promis-
ing alternative or complementary strategy for pest control and management ( ;
5 5 ; )-

Final considerations

In Brazil, as in other countries that grow Bt soybeans, the main strategy for pest management is high
doses and maintenance of refuges. The main objective is to delay the evolution of resistance to
Bt toxins in the target pests. Studies indicate that this strategy is efficient to ensure the longevity of
Bt plants ( H 3 ; ).

One of the main problems in the cultivation of Bt soybeans in Brazil is the emergence of secondary
pests. Several studies have reported significant losses in production by the action of these species

( ; ). The technological solution to this problem is the
production of transgenic plants expressing a higher number of Bt toxins, as indicated in the results
obtained by , which show the high efficiency of a soybean variety containing two

Bt toxins in the control of primary and secondary pests. The recommended strategies for controlling
problematic pests are the cultivation of plants expressing genes for two or three Bt toxins, the expansion
of refuge areas, and the use of other management tactics ( , ; ).

The emergence of secondary pests is a possibility that can not be discounted, especially for plants such
as soybeans that are targets of different insect species ( ; ). The
relevant question here is as follows: how are we going to address this possibility? To use only the tech-
nological solution of increasing the number of toxins expressed by Bt plants, or seek ecological solu-
tions of greater complexity? A more complex solution requires a more accurate assessment of the
effective contribution of natural enemies in reducing the impact of primary and secondary pests as
well as changes in the methods of large-scale plant cultivation. In addition, it should take into account
other information, such as geographical aspects of cultivated areas, target pest biology, and genetic

variability ( ; ).

Several studies have indicated the potential of natural enemies to help in the fight against soybean
pests ( ; ; ), but the introduction of these species
is difficult in homogeneous crops, as they occur over large areas of cultivation. Perhaps in the near
future it will be necessary to implement cultivation processes in large areas that will increase plant
diversity and, thus, favor the presence of the natural enemies of the main pests.

found a greater diversity of the natural enemies of soybean pests in cultivated areas with a
greater diversity of vegetal species nearby. In these areas there was a greater contribution of the natu-
ral enemies to the control of stink bugs (Hemiptera: Pentatomidae). The importance of plant diversity
for the development and maintenance of the diversity of natural enemies in cultivated areas has also

been highlighted by , , ,
), , and . In Brazil, there are studies indi-
cating the possibility of using natural enemies in the fight against soybean pests (

, 2016; 5 ).
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The history of pest control shows that the evolution of resistance to the control agents that are devel-
oped is only a matter of time. Over the course of the relationship of human beings with the pests of
cultivated plants, we have developed a set of strategies to minimize losses in production and have
become aware that our relationship with pests is continuous in space and time. These strategies mini-
mized the losses and increased the useful life of the control agents. The strategy of “high doses and
structured shelter” should be considered the minimum necessary in terms of pest control and man-
agement. It is necessary, however, to extend the set of procedures used. In this sense, the development
of management strategies that are more complex and that really favor the increase of the diversity of
agroecosystems is fundamental; these strategies will enable an increase in and maintenance of the
diversity of natural enemies.
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