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Abstract
The measurement of statistical evidence is of considerable current interest in fields where statistical
criteria are used to determine knowledge. The most commonly used approach to measuring such evi-
dence is through the use of p-values, even though these are known to possess a number of properties
that lead to doubts concerning their validity as measures of evidence. It is less well known that there
are alternatives with the desired properties of a measure of statistical evidence. The measure of evi-
dence given by the relative belief ratio is employed in this paper. A relative belief multiple testing algo-
rithm was developed to control for false positives and false negatives through bounds on the evidence
determined by measures of bias. The relative belief multiple testing algorithm was shown to be consis-
tent and to possess an optimal property when considering the testing of a hypothesis randomly
chosen from the collection of considered hypotheses. The relative belief multiple testing algorithm
was applied to the problem of inducing sparsity. Priors were chosen via elicitation, and sparsity was
induced only when justified by the evidence and there was no dependence on any particular form of
a prior for this purpose.

Key words: multiple testing, sparsity, statistical evidence, relative belief ratios, priors, checking for
prior–data conflict, relative belief multiple testing algorithm, testing for sparsity

Introduction
The need for the measurement of statistical evidence arises as an issue in science as follows. The
scientific problem under consideration concerns some quantity of interest for which an investigator
either wants to know its value or has a hypothesis that the quantity takes a specific value and wants
to know if this is true or false. To answer such a question data x are collected. It is rare that the data
provide a definitive answer but it is believed that the data contain evidence concerning this. The pur-
pose of statistical reasoning or inference is to use this evidence to estimate the quantity of interest and
provide an assessment of the accuracy of the estimate or indicate whether there is evidence either in
favor of or against the hypothesized value, and provide an assessment of the strength of this evidence.

To implement statistical inference, additional ingredients are required. First, it is presumed that
the data x can be thought of as having arisen from a probability distribution as represented by the
density f. Provided the data were collected properly, this assumption is reasonable and this is assumed
here. A consequence of this is that the data can be thought of as being objective in the sense that f fully
describes how the data were produced from the set X of possible data values. Of course, f is generally
not known so it is assumed that f∈ {fθ : θ∈Θ}, a family of probability densities on X referred to as the
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statistical model. Here θ is called the parameter and Θ the parameter space of the model. The quantity
of interest is then represented as ψ =Ψ(θ), where Ψ:Θ→Ψ, and we don’t distinguish between the
function and its range to save notation.

A natural approach to constructing a theory of inference is to determine a measure of the evidence in
the data x that ψ is the true value for each ψ∈Ψ. The value ψ(x)∈Ψ that maximizes this measure of
evidence is, then, the obvious estimate and a subset C(x)⊂Ψ of values with evidence measures above
some threshold would, through a measure of its size, serve to give an assessment of the accuracy of
ψ(x). For a null hypothesis H0 : Ψ(θ) = ψ0 the measure of evidence at ψ0 indicates whether there is evi-
dence in favor of or againstH0 and a measure of the strength of this evidence is then obtained by com-
paring the evidence at ψ0 with the evidence at each of the other possible values for ψ. A theory that
accomplishes this, based on the relative belief ratio RB(ψ | x) as the measure of evidence, is described
by Evans (2015) and outlined in the section “Statistical analysis based on relative belief”.

Even though p-values are commonly used to measure evidence, it has long been recognized that there
are serious issues associated with their use (for example, see Royall (1997)). This can be readily
observed by considering what the cutoff is to determine when there is evidence against or for a
hypothesis. Cutoffs like 5% are not only arbitrary, many treatments of p-values insist that it is not pos-
sible for a p-value to give evidence in favor of a null hypothesis. Although that is a perfectly valid state-
ment, it seems like a significant weak point for a supposed measure of evidence. Even when a very
small p-value is observed this does not mean that a result of scientific interest has been obtained.
For, given the finite accuracy with which measurements are taken, it is rarely the case that the truth
of H0 practically corresponds to an exact value ψ0. Rather, there is a region about ψ0 such that if the
true value lies in this region, for all practical purposes, H0 is true. Using relative belief ratios evidence
can be obtained either for or against H0, there is a clear measure of the strength of the evidence, and
the essential discreteness involved in assessing H0 is easily handled.

The theory of relative belief requires an additional ingredient, namely a prior probability distribution
π must be specified on Θ that reflects the beliefs concerning what values of θ are more or less likely.
The prior is determined by an elicitation algorithm that is an argument as to why the prior in question
is to be considered suitable. The prior π is subjective in nature and that seems contrary to the dictates
of science, which properly has objectivity as the goal. Although it doesn’t justify the use of priors, it is
to be noted that the model {fθ : θ∈Θ} is also subjective as it is chosen by the investigator. One could
argue in favor of this subjectivity, however, particularly when the choices are being made by an expert,
as informed input should result in a better analysis, but doubts linger. Part of our approach to dealing
with this concern is to check that any ingredient chosen is not contradicted by the objective data.
Therefore, model checking and checking for prior–data conflict are necessary. Also, it is possible to
choose a prior such that a desired result is obtained but such bias can be measured and controlled a
priori by design. Some discussion on assessing prior–data conflict and bias is provided in the section
“Statistical analysis based on relative belief”.

The focus of this paper is the following problem. Suppose Ψ is an open subset of Rk and we wish to
assess the individual hypotheses H0i = {θ : Ψi(θ) = ψ0i}, namely H0i is the hypothesis that the i-th coor-
dinate of ψ equals ψ0i. Considering these hypotheses separately is the multiple testing problem and the
concern is to ensure that while controlling the individual error rate, the overall error rate is not too
large. An error means either the acceptance of H0i when it is false (a false negative) or the rejection
of H0i when it is true (a false positive). One approach is to make an inference about the number of
H0i that are true (or false) and then use this to control the number of H0i that are accepted (or
rejected). In the section “Inferences for multiple tests”, this is shown to work for small k but to fail
for large k. As a remedy for this, a relative belief multiple testing algorithm is developed that controls
for false positives and false negatives through the use of bounds on the evidence that are determined
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by the measurement of bias. This approach is shown to be consistent and to possess an optimal prop-
erty when considering the assessment of a randomly selected hypothesis from the set of hypotheses.

In the section “Applications”, an application is made of the relative belief multiple testing algorithm
to the problem of inducing sparsity. If it is known that ψi =Ψi(θ) = ψ0i, then the effective dimension
of the quantity of interest is k − 1, which is a simplification of the model. Sometimes there is a belief
that many of the hypotheses H0i are true, but there is little prior knowledge about which are true and
it is, therefore, not clear how to choose a prior that reflects this belief. A common approach is to use a
prior that, together with a particular estimation procedure, forces many of the ψi to take the corre-
sponding value ψ0i. For example, the use of a Laplace prior together with using the maximum value
of the posterior as the estimate, known as maximum a posteriori (MAP) estimation, is known to
accomplish this for certain problems. Problems with this approach include the possibility that such
an assignment is simply an artifact of the prior and the estimation procedure and that sparsity
requires an overly concentrated prior that leads to prior–data conflict with the coordinates for which
H0i is rejected. It would be preferable to have a procedure that was not dependent on a specific form
for the prior, avoided prior–data conflict, and was based on the statistical evidence contained in the
data, and this is the approach taken here. Practical applications are presented, with special emphasis
on regression problems including the situation where the number of predictors exceeds the number
of observations.

Evans (2015) noted that there are connections between relative belief and the pure likelihood
approach to inference, as both consider statistical evidence as the core concept. This is also reflected
in the approach to multiple testing developed in the current paper and that discussed by Strug and
Hodge (2006a, 2006b). There have been several priors proposed for the sparsity problem through
MAP estimation; for example, the spike-and-slab prior discussed by George and McCulloch (1993)
and Rockova and George (2014), the Laplace prior discussed by Park and Casella (2008), and the
horseshoe prior of Carvalho et al. (2009). Any prior can be used with the approach taken here, but
logically an elicited prior is preferred over one possessing certain properties.

Statistical analysis based on relative belief
Suppose that interest is in inference about the quantity Ψ(θ) = ψ. Let ΠΨ denote the prior measure of
ψ, with density πΨ, and let ΠΨ(⋅ | x) denote the posterior measure of ψ, with density πΨ(⋅ | x). Evidence
is measured by change in belief (for example, see Salmon (1973) or Howson and Urbach (2006)), thus
if belief in ψ increases there is evidence in favor of this value and evidence against it if belief decreases.
Evans (2015) argued for the relative belief ratio RBΨ(ψ | x) = limδ→0ΠΨ(Nδ(ψ) | x)/ΠΨ(Nδ(ψ)) as a
measure of evidence, where Nδ(ψ) is a sequence of neighborhoods of ψ converging (nicely, as defined
by Rudin (1974)) to {ψ} as δ→ 0. When πΨ and πΨ(⋅ | x) are continuous at ψ, then

RBΨðψ j xÞ = πΨðψ j xÞ=πΨðψÞ (1)

So RBΨ(ψ | x) > 1 indicates evidence in favor of ψ, RBΨ(ψ | x) < 1 indicates evidence against, and
RBΨ(ψ | x) = 1 gives no evidence either way. Any 1−1 increasing function of RBΨ(⋅ | x) is an equivalent
measure of evidence and RBΨ(⋅ | x) is invariant under smooth reparameterizations, thus relative belief
inferences are invariant to these choices.

The best estimate of ψ is the value that maximizes the evidence, namely ψ(x) = arg sup RBΨ(ψ | x).
Associated with this is a γ-credible region CΨ, γ(x) = {ψ : RBΨ(ψ | x)≥ cΨ, γ(x)} containing those values
whose evidence is above the threshold cΨ, γ(x) = inf{k : ΠΨ(RBΨ(ψ | x)> k | x)≤ γ}. As ψ(x)∈ CΨ, γ(x),
for every γ∈ [0, 1], for selected γ, the “size” of CΨ, γ(x) is a measure of the accuracy of ψ(x). A calibra-
tion of RBΨ(ψ0 | x) is given by the strength
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ΠΨðRBΨðψ j xÞ ≤ RBΨðψ0 j xÞ j xÞ (2)

When RBΨ(ψ0 | x)< 1, a small value of eq. (2) indicates a large posterior belief that the true value has a
relative belief ratio greater than RBΨ(ψ0 | x), and therefore there is strong evidence against ψ0 but only
weak evidence against it if eq. (2) is big. If RBΨ(ψ0 | x)> 1, a large value of eq. (2) indicates a small pos-
terior probability that the true value has a relative belief ratio greater than RBΨ(ψ0 | x), and therefore
there is strong evidence in favor of ψ0, whereas a small value of eq. (2) only indicates weak evidence
in favor of ψ0. A variety of optimality and consistency results have been established for these infer-
ences (see Evans (2015)).

When H0 : Ψ(θ) = ψ0 is false both eqs. (1) and (2) converge to 0, and when H0 is true then eq. (1) con-
verges to the maximum possible value, which is always >1. When H0 is true and there are only a finite
number of possible values for ψ then eq. (2) converges to 1, but in the continuous case eq. (2) can con-
verge to a U(0,1) distribution. The view is taken here, however, that any time continuous probability is
used this is an approximation to a finite, discrete context. For example, if ψ is a mean and the response
measurements are to the nearest centimeter, then of course the true value of ψ cannot be known to an
accuracy >0.5 cm, no matter how large the sample is. Furthermore, there are implicit bounds associated
with any measurement process. As such, the restriction can be made to discretized parameters that take
only a finite number of values. Thus, when ψ is a continuous, real-valued parameter, it is discretized to
the intervals : : : , (ψ0− 3δ/2, ψ0− δ/2], (ψ0− δ/2, ψ0+ δ/2], (ψ0+ δ/2, ψ0+ 3δ/2], : : : for some choice
of δ> 0, and there are only a finite number of such intervals covering the range of possible values. With
this discretization, then H0 = (ψ0− δ/2, ψ0+ δ/2] and eq. (2) is consistent. Thus, δ needs to be specified
as part of the application, at least when the goal is assessing the evidence concerning H0. The value of δ
is simply the smallest difference from ψ0 that matters in the application and presumably a knowledgeable
scientist knows what this is and designs the measurement process that produces the data accordingly.

Let A ⊂ X be such thatH0 is accepted whenever x∈A, thus, withM(⋅ |H0) denoting the prior predictive
measure given that H0 is true,M(A |H0) is the prior probability of accepting H0 when it is true. The rel-
ative belief acceptance region is Arb(ψ0) = {x : RBΨ(ψ0 | x)> 1}. Let R ⊂ X be such that H0 is rejected
whenever x∈ R and the relative belief rejection region is Rrb(ψ0) = {x : RBΨ(ψ0 | x)< 1}. LettingM denote
the unconditional prior predictive measure the following result was proved by Evans (2015).

Theorem 1: (i) The acceptance region Arb(ψ0) minimizes M(A) among all acceptance regions A, sat-
isfying M(A |H0) ≥M(Arb(ψ0) |H0). (ii) The rejection region Rrb(ψ0) maximizes M(R) among all
rejection regions R, satisfying M(R |H0)≤M(Rrb(ψ0) |H0).

The implication of this is that, when ΠΨ({ψ0}) = 0, then Arb(ψ0) minimizes the prior probability that H0

is accepted given that it is false among all acceptance regions A satisfying the condition in (i) and Rrb(ψ0)
maximizes the prior probability that H0 is rejected given that it is false among all rejection regions R sat-
isfying the condition in (ii). The same result holds for the case when ΠΨ({ψ0})> 0 with the inequalities
in (i) and (ii) replaced by equalities. Under independent identically distributed (IID) sampling,
M(Arb(ψ0) |H0)→ 1 and M(Rrb(ψ0) |H0)→ 0 as sample size increases, so these quantities can be con-
trolled by design. Theorem 1 can be generalized to obtain optimality results for the acceptance region
Arb, q(ψ0) = {x : RBΨ(ψ0 | x)> q} and the rejection region Rrb, q(ψ0) = {x : RBΨ(ψ0 | x)< q}. The follow-
ing inequality is useful in the section “Inferences for multiple tests” in controlling error rates.

Theorem 2: M(Rrb, q(ψ0) | ψ0)≤ q.

Proof: By the Savage–Dickey result (see proposition 4.2.7 in Evans (2015)), RBΨ(ψ0 | x) =m(x | ψ0)/m(x).
Now EMð⋅ jψ0ÞðmðxÞ=mðx jψ0ÞÞ = 1, and therefore, by Markov’s inequality, M(Rrb,q(ψ0) | ψ0) =
M(m(x)/m(x | ψ0)> 1/q | ψ0)≤ q.
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One of the key concerns with Bayesian inference methods is that the prior can bias the analysis. Given
a measure of evidence, however, it is possible to measure and control bias. The bias against H0 is given
by M(RBΨ(ψ0 | x) ≤ 1 | ψ0) = 1−M(Arb(ψ0) | ψ0) as this is the prior probability that evidence will be
obtained against H0 when it is true. If the bias against H0 is large, subsequently reporting, after seeing
the data, that there is evidence against H0 is not convincing. The bias in favor of H0 is given by
MTðRBΨðψ0 j xÞ ≥ 1 jψ 0

0Þ for values ψ 0
0 ≠ ψ0 such that the difference between ψ0 and ψ

0
0 represents

the smallest difference of practical importance; note that this tends to decrease as ψ
0
0 moves farther

away from ψ0. When the bias in favor is large, subsequently reporting, after seeing the data, that there
is evidence in favor of H0 is not convincing. For a fixed prior, both biases decrease with sample size
and thus, in design situations, they can be used to set sample size and thereby control bias.

It is never known that the ingredients chosen for a statistical analysis are correct, but hopefully these
serve as useful approximations in the sense that inferences drawn from them are reasonably accurate.
If x lies in the tails of fθ for every θ∈Θ, then it can be concluded that there is a problem with the model
and it needs to be modified. It is clear that checking the prior is a meaningless activity if the model is to
be discarded, thus model checking is carried out first. If the model passes, then the prior is checked and
the approach of Evans and Moshonov (2006) is adopted here. For this let T be a minimal sufficient sta-
tistic (MSS) for the model with density mT, and if the probabilityMT(mT(t)≤mT(T(x))) is small, then
conclude a prior–data conflict exists as this says that T(x) lies in the tails of the prior-predictive. The
consistency of this procedure was established by Evans and Jang (2011a) as, under weak conditions
this probability converges to Π(π(θ) ≤ π(θtrue)), and a methodology for modifying a prior that fails
its checks was developed by Evans and Jang (2011b).

Inferences for multiple tests
Consider now the multiple testing problem. The typical approach to this problem relies on the use of
p-values that, for the reasons discussed, are not adopted here. Rather, the relative belief ratio as a valid
measure of statistical evidence is used as the basis for all inferences.

To see what the problem is with multiple testing suppose thatΨi is finite for each i, perhaps arising via
a discretization as discussed in the section “Statistical analysis based on relative belief”, and let
ξ = ΞðθÞ = k−1

P
k
i=1 IH0i

ðΨiðθÞÞ be the proportion of the hypotheses H0i that are true. Note that the
discreteness is essential, otherwise, under a continuous prior on Ψ, the prior distribution of Ξ(θ) is
degenerate at 0. In an application it is desirable to make inference about the true value of ξ ∈ Ξ =
{0, 1/k, 2/k, : : : , 1} and this is based on the relative belief ratio RBΞ(ξ | x) =Π(Ξ(θ) = ξ | x)/Π(Ξ(θ) =
ξ). The appropriate estimate of Ξ is ξ(x) = arg supξRBΞ(ξ | x) and its accuracy is assessed using the size
of CΞ, γ(x) for some choice of γ∈ [0, 1]. Hypotheses such as H0 = {θ : Ξ(θ)∈ [ξ0, ξ1]}, namely the pro-
portion true is at least ξ0 and no greater than ξ1, is assessed using the relative belief ratio RB(H0 | x) =
Π(ξ0≤ Ξ(θ)≤ ξ1 | x)/Π(ξ0≤ Ξ(θ)≤ ξ1), which equals RBΞ(ξ0 | x) when ξ0 = ξ1.

The estimate ξ(x) can be used to control how many hypotheses are potentially accepted. For this, select
kξ(x) of the H0i as being true from among those for which RBΨi

(ψ0i | x)> 1. Note that it does not make
sense to accept H0i when RBΨi

(ψ0i | x)< 1 as there is evidence against H0i. Thus, if there are fewer than
kξ(x) satisfying RBΨi

(ψ0i | x)> 1, then fewer than this number should be accepted. If there are more than
kξ(x) of the relative belief ratios satisfying RBΨi

(ψ0i | x)> 1, then some method will have to be used to
select the kξ(x) that are potentially accepted. It is clear, however, that the logical way to do this is to
order the H0i, for which RBΨi

(ψ0i | x)> 1, based on their strengths ΠΨ(RBΨi
(ψ0i | x)≤ RBΨi

(ψ0i | x) | x),
from largest to smallest, and accept at most the kξ(x) for which the evidence is strongest. If control is
desired of the number of false positives then the relevant parameter of interest is υ =ϒ(θ) = 1− Ξ(θ),
the proportion of false hypotheses. Note that Π(ϒ(θ) = υ) = Π(Ξ(θ) = 1 − υ), and therefore the
relative belief estimate of υ satisfies υ(x) = 1 − ξ(x). Following the same procedure, the H0i with
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RBΨi
(ψ0i | x)< 1 are ranked via their strengths and at most kυ(x) are rejected. This procedure will be

referred to as the multiple testing algorithm.

The consistency of the multiple testing algorithm follows from results proved by Evans (2015)
(see section 4.7.1 therein) under IID sampling. In other words, as the amount of data increases, ξ(x)
converges to the proportion ofH0i that are true, each RB(ψ0i | x) converges to the largest possible value
(always >1) when H0i is true and converges to 0 when H0i is false, and the evidence in favor or against
converges to the strongest possible, depending on whether the hypothesis in question is true or false.

The following example demonstrates the characteristics of the algorithm.

Example 1. Location normal.

Suppose that there are k independent samples xij for 1≤ i≤ k, 1≤ j≤ n, where the i-th sample is from
a N(μi, σ

2) distribution with μi unknown and σ2 known. It is desired to assess the evidence as to
whether or not H0i : μi = μ0 is true for i = 1, : : : , k. It is easy to modify our development to allow the
sample sizes to vary, and the case where σ2 is unknown is considered in the section “Applications”.
This context is relevant to the analysis of microarray data. The statistic TðxÞ = ðx1, : : : , xkÞ is an
MSS for this model, and thus a natural model checking procedure is to compare the observed value
of the statistic

P
k
i=1

P
n
j=1ðxij − xiÞ2=σ2 to the chi-squared(k(n− 1)) distribution.

For the prior, the μ1, : : : , μk are taken to be IID from a Nðμ0, λ20σ2Þ distribution. The value of λ20 is deter-
mined via elicitation. For this it is supposed that it is known with virtual certainty that each μi∈ (ml, mu)
for specified valuesml≤mu. Here, virtual certainty is interpreted to mean that the prior probability of this
interval is at least γ, where γ is a large probability like 0.99. It is also supposed that μ0 = (ml+mu)/2. This
implies that λ0 = (mu−ml)/(2σΦ−1((1+ 0.99)/2)). Following Evans and Jang (2011b), increasing the
value of λ0 implies a more weakly informative prior in this context and, as such, decreases the pos-
sibility of prior–data conflict, and this indicates how the prior is to be modified in case of prior–data
conflict. Note that this elicitation argument also specifies μ0 when this is not predetermined. The
prior distribution of T is Nkðμ01k, σ2ðλ20 þ 1=nÞIkÞ, where 1k is the k-dimensional vector of 1s and
Ik is the k × k identity matrix, and therefore the check on the prior becomes the probability
Pðχ2k ≥

P
k
i=1 ðxi − μ0Þ2=σ2ðλ20 þ 1=nÞÞ, where χ2k∼ chi-squared(k).

The posteriors of the μi are independent μi j x ∼ NðμiðxÞ, ðnλ20 þ 1Þ−1λ20σ2Þ, where μiðxÞ=
ðnþ 1=λ20Þ−1ðnxi þ μ0=λ20Þ. Given that the measurements are taken to finite accuracy it is not realistic
to test μi = μ0. A value δ> 0 is specified so that H0i = (μ0− δ/2, μ0+ δ/2] in a discretization of R1 into
a finite number of intervals, each of length δ, as well as two tail intervals. For some D ∈ N there are
2D + 1 intervals Id = (μ0 + (d − 1/2)δ, μ0 + (d + 1/2)δ] for d ∈ { −D, −D + 1, : : : , D} that span
(ml, mu), together with the tail intervals (−∞, μ0 − (D + 1/2)δ] and (μ0 + (D + 1/2)δ, ∞).
Then RB

i
ðId jxÞ= fΦððdþ 1=2Þδ=λ0σÞ−Φððd− 1=2Þδ=λ0σÞg−1 × fΦððnλ20þ 1Þ1=2 ðμ0þðdþ1=2Þδ−

μiðxÞÞ=λ0σÞ−Φððnλ20þ1Þ1=2ðμ0þðd−1=2Þδ−μiðxÞÞ=λ0σÞg, with a similar formula for the tail
intervals. When δ is small this is approximated by the ratio of the posterior to prior densities of μi
evaluated at μ0 + dδ. Then RB(I0 | x) = RBi(H0i | x) gives the evidence for or against H0i and
the strength of this evidence is computed using the discretized posterior distribution. Notice that
RBi(H0i | x) converges to ∞ as λ0→∞ and this is characteristic of other measures of evidence such as
Bayes factors. As discussed by Evans (2015), this is one of the reasons why calibrating eq. (1) via
eq. (2) is necessary.

Now, consider the bias in the prior. To simplify matters, the continuous approximation is used as this
makes little difference here (see Tables 3 and 4). The bias against μi = μ0 equals
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MðRBiðμ0 j xÞ ≤ 1 j μ0Þ = 2ð1 −Φðanð1ÞÞÞ (3)

where

anðqÞ =
� fð1þ 1=nλ20Þ logððnλ20 þ 1Þ=q2Þg1=2, q2 ≤ nλ20 þ 1

0, q2 > nλ20 þ 1

Note that eq. (3) converges to 2(1−Φ(1)) = 0.32 as λ0→ 0 and to 0 as λ0→∞ and, for fixed λ0, con-
verges to 0 as n→∞. Thus, there is never strong bias against μi = μ0; this is as expected because the
prior is centered on μ0. The bias in favor of μi = μ0 is measured by

MðRBiðμ0 j xÞ ≥ 1 j μ0 ± δ=2Þ =Φð ffiffiffi
n

p
δ=2σ þ anð1ÞÞ −Φð ffiffiffi

n
p

δ=2σ − anð1ÞÞ (4)

As λ0 →∞ eq. (4) converges to 1, thus there is bias in favor of μi = μ0 and this reflects what was
obtained for the limiting value of RBi(H0i | x). Also, eq. (4) decreases with increasing δ and goes to
0 as n→∞; thus, bias of both types can be controlled by sample size. Perhaps the most important take
away from this discussion, however, is that by using a supposedly noninformative prior with λ0 large,
bias in favor of the H0i is being induced.

Consider, first, a simulated data set x when k = 10, n = 5, σ = 1, δ = 1, μ0 = 0, (ml, mu) = (−5, 5), so that
λ0 = 10/2Φ−1(0.995) = 1.94 and suppose μ1 = μ2 = : : : = μ7 = 0, with the remaining μi = 2. The relative
belief ratio function RBΞ(⋅ | x) is plotted in Fig. 1. In this case, the relative belief estimate ξ(x) = 0.70 is
exactly correct. Table 1 gives the values of the RBi(0 | x) together with their strengths. It is clear that
the multiple testing algorithm leads to 0 false positives and 0 false negatives. Therefore, the algorithm
works perfectly on these data, but of course it can’t be expected to perform as well when the three
nonzero means move closer to 0. Also, it is worth noting that the strength of the evidence in favor
of μi = 0 is very strong for i = 1, 2, 3, 5, 6, 7, but only moderate when i = 4. The strength of the evidence
against μi = 0 is very strong for i = 8, 9, 10. The maximum possible value of RBi((μ0− δ/2, μ0+ δ/2] | x)
is (2Φ(δ/2λ0σ)− 1)−1 = 4.92, thus some of the relative belief ratios are relatively large.
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Fig. 1. A plot of the relative belief ratio of Ξ when n = 5, k = 10, and 7 means equal 0 with the remaining means
equal to 2 in Example 1 with δ = 1.
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To investigate sensitivity to the choice of δ several smaller values were considered. Table 2 gives the
relevant entries for the same sample as Table 1 when δ = 0.5. The relative belief ratios do not change
by much and still give evidence in the right direction. Some of the strengths do change, particularly for
i = 1 and i = 6, which now indicate a bit weaker evidence in favor. In this case, ξ(x) = 0.60. Repeating
these calculations with δ = 0.1 gives similar results, with the relative belief ratios staying about the
same but the strengths getting weaker, and now ξ(x) = 0.50. The insensitivity of the RBi to δ is
expected, as the data should increase belief in the interval (μ0 − δ/2, μ0 + δ/2] when H0i is true and
decrease it when it is false. It is to be noted, however, that δ is not a tuning parameter of the algorithm
but is determined by scientific knowledge in the application as the smallest difference from μ0 of prac-
tical importance.

Now, consider basically the same context but with k = 1000, μ1 = : : : = μ700 = 0 and the remaining
μi = 2. In this case, ξ(x) = 0.47, which is a serious underestimate. As such, the multiple testing algo-
rithm will not record enough acceptances and will fail. This problem arises due to the independence
of the μi. For the prior distribution of kΞ(θ) is binomial(k, 2Φ(δ/2λ0σ)− 1) and the prior distribution
of kϒ(θ) is binomial (k, 2(1−Φ(δ/2λ0σ))). Thus, the a priori expected proportion of true hypotheses
is 2Φ(δ/2λ0σ)− 1 and the expected proportion of false hypotheses is 2(1−Φ(δ/2λ0σ)). When δ/2λ0σ is
small, as when the amount of sampling variability or the diffuseness of the prior are large, then the
prior on Ξ suggests a belief in many false hypotheses. When k is small, the data can override this to
produce accurate inferences about ξ or υ, but otherwise, large amounts of data are needed that may
not be available. Contrary to what is sometimes claimed, testing multiple hypotheses is also a problem
in a Bayesian framework.

Table 1. Relative belief ratios and strengths for the μi in Example 1 with k = 10, δ = 1.0.

i 1 2 3 4 5

μi 0 0 0 0 0

RBi(0 | x) 3.27 3.65 2.98 1.67 3.57

Strength 1.00 1.00 1.00 0.37 1.00

i 6 7 8 9 10

μi 0 0 2 2 2

RBi(0 | x) 3.00 3.43 2.09 × 10−4 3.99 × 10−4 8.80 × 10−3

Strength 1.00 1.00 4.25 × 10−5 8.11 × 10−5 1.83 × 10−3

Table 2. Relative belief ratios and strengths for the μi in Example 1 with k = 10, δ = 0.5.

i 1 2 3 4 5

μi 0 0 0 0 0

RBi(0 | x) 3.58 4.17 3.15 1.43 4.64

Strength 0.62 1.00 0.59 0.26 1.00

i 6 7 8 9 10

μi 0 0 2 2 2

RBi(0 | x) 3.18 3.83 3.25 × 10−5 6.76 × 10−5 2.37 × 10−3

Strength 0.59 1.00 3.30 × 10−6 7.00 × 10−6 2.47 × 10−4
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Example 1 makes it clear that, in general, accurate inference about ξ and υ is not feasible in high-
dimensional contexts without large amounts of data. Rather than focus on estimating the proportion
of true or false hypotheses, however, we consider an approach designed to protect against false posi-
tives or false negatives. It is often the case that when evidence against a hypothesis is obtained it
prompts some kind of action, and a user may wish to prevent too many that are spurious.
Alternatively, the user may be concerned with too many false negatives, as this may conceal a discov-
ery of real value.

The entries in Tables 1 and 2 point to a feasible approach to these problems by focusing instead
on the evidence concerning the individual μi, as these parameters do not depend on high-
dimensional aspects of the full model parameter like ξ and υ do. To control the actions taken
based on the evidence, constants qR and qA, where 0 < qR ≤ 1 ≤ qA, are used as follows: classify
H0i as accepted when RBi(ψ0i | x) > qA and as rejected when RBi(ψ0i | x) < qR. Note that those
accepted always have evidence in favor, whereas those rejected always have evidence against.
The strengths can also be quoted to assess the reliability of these inferences. Provided qR is greater
than the minimum possible value of RBi(⋅ | x), and this is typically 0, and the qA chosen is less than
the maximum possible value of RBi(ψ0i | x), and this is 1 over the prior probability of H0i, then this
procedure is consistent as the amount of data increases. In fact, the related estimates of ξ and υ
are also consistent. The price paid for this is that a hypothesis will not be classified whenever
qR ≤ RBi(ψ0i | x) ≤ qA. Not classifying a hypothesis implies that there is not enough evidence for
this purpose and more data are required. This approach is referred to as the relative belief multi-
ple testing algorithm.

It remains to determine qA and qR. Consider, first, protecting against too many false positives. The a
priori conditional prior probability, given that H0i is true, of finding evidence against H0i less than
qR satisfies M(RBi(ψ0i | X)< qR | ψ0i)≤ qR by Theorem 2. Naturally, we want the probability of a false
positive to be small, and choosing qR small accomplishes this. The a priori probability that a randomly
selected hypothesis produces a false positive is

1
k

Xk
i=1

MðRBiðψ0i jXÞ < qR jψ0iÞ (5)

which is bounded above by qR and thus converges to 0 as qR→ 0. Also, for fixed qR, eq. (5) converges
to 0 as the amount of data increases. More generally qR can be allowed to depend on i, but when the ψi
are similar in nature this does not seem necessary. Furthermore, it is not necessary to weight the
hypotheses equally, therefore a randomly chosen hypothesis with unequal probabilities could be rel-
evant in certain circumstances. In any case, controlling the value of eq. (5), whether by sample size
or by the choice of qR, is clearly controlling for false positives. Suppose there is proportion pFP of false
positives that is just tolerable in a problem. Then, qR can be chosen so that eq. (5) is less than or equal
to pFP; note that qR = pFP satisfies this.

Similarly, if ψ
0
0i ≠ ψ0i then MðRBiðψ0i jXÞ > qA jψ 0

0iÞ is the prior probability of accepting H0i when

ψ
0
0i is the true value. For a given effect size δ of practical importance it is natural to take

ψ
0
0i = ψ0i ± δ=2. In typical applications this probability decreases the “farther” ψ

0
0i is from ψ0i, and

choosing qA to make this probability small will make it small for all meaningful alternatives. Under
these circumstances the a priori probability that a randomly selected hypothesis produces a false neg-
ative is bounded above by

1
k

Xk
i=1

MðRBiðψ0i jXÞ > qA jψ 0
0iÞ (6)

Evans and Tomal

FACETS | 2018 | 3: 563–583 | DOI: 10.1139/facets-2017-0121 571
facetsjournal.com

FA
C

E
T

S 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.f
ac

et
sj

ou
rn

al
.c

om
 b

y 
18

.2
21

.1
56

.5
0 

on
 0

5/
18

/2
4

http://dx.doi.org/10.1139/facets-2017-0121
http://www.facetsjournal.com


As qA→∞, or as the amount of data increases with qA fixed, then eq. (6) converges to 0 and the num-
ber of false negatives can be controlled. If there is proportion pFN of false negatives that is just tolerable
in a problem, then qA can be chosen so that eq. (6) is less than or equal to pFN.

The following optimality result holds for relative belief multiple testing.

Corollary 1: (i) Among all procedures for which the prior probability of accepting H0i, when it is
true, is at least M(RBi(ψ0i | X)> qA | ψ0i) for i = 1, : : : , k, the relative belief multiple testing algorithm
minimizes the prior probability that a randomly chosen hypothesis is accepted. (ii) Among all proce-
dures for which the prior probability of rejecting H0i, when it is true, is less than or equal to
M(RBi(ψ0i | X)< qR | ψ0i), then the relative belief multiple testing algorithm maximizes the prior prob-
ability that a randomly chosen hypothesis is rejected.

Proof: For (i) consider a procedure for multiple testing and let Ai be the set of data values where H0i is
accepted. Then, by hypothesisM(RBi(ψ0i | X)> qA | ψ0i)≤M(Ai | ψ0i) and by the analog of Theorem 1,
M(Ai)≥M(RBi(ψ0i | X) > qA). Applying this to a randomly chosen H0i gives the result. The proof of
(ii) is basically the same.

Applying the same discussion as after Theorem 1, it is seen that, under reasonable conditions, the rel-
ative belief multiple testing algorithm minimizes the prior probability of accepting a randomly chosen
H0i when it is false and maximizes the prior probability of rejecting a randomly chosen H0i when it is
false. This establishes an optimality result for the relative belief multiple testing algorithm.

Consider now the application of the relative belief multiple testing algorithm in the previous example.

Example 2. Location normal example, continued.

In this context, M(RBi(μ0 | x) < qR | μ0) = 2(1−Φ(an(qR)) for all i and, therefore, this is the value of
eq. (5). Therefore, qR is chosen to make this number suitably small. Table 3 records values for
eq. (5) for both the continuous and discretized cases. From this it is seen that for small n there can
be some bias against H0i when qR = 1, and thus the prior probability of obtaining false positives is per-
haps too large. Table 3 demonstrates that choosing a smaller value of qR can adequately control the
prior probability of false positives.

Table 3. Prior probability that a randomly chosen hypothesis produces a false positive when δ/σ = 1, continuous
and discretized () versions, in Example 2.

n λ0 qR (5) n λ0 qR (5)

1 1 1 0.239 (0.228) 5 1 1 0.143 (0.097)

1/2 0.041 (0.030) 1/2 0.051 (0.022)

1/10 0.001 (0.000) 1/10 0.006 (0.001)

2 1 0.156 (0.146) 2 1 0.074 (0.041)

1/2 0.053 (0.045) 1/2 0.031 (0.013)

1/10 0.005 (0.004) 1/10 0.005 (0.001)

10 1 0.031 (0.026) 10 1 0.013 (0.004)

1/2 0.014 (0.011) 1/2 0.006 (0.002)

1/10 0.002 (0.002) 1/10 0.001 (0.001)
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For false negatives, consider eq. (6), where

MðRBiðμ0 jxÞ> qA jμ0 ± δ=2Þ=
�
Φð ffiffiffi

n
p

δ=2σþ anðqAÞÞ−Φð ffiffiffi
n

p
δ=2σ− anðqAÞÞ, 1≤ q2A ≤ nλ20þ 1

0, q2A > nλ20þ 1

for all i. It is easy to show that this is monotone decreasing in δ, and therefore it is an upper bound on
the expected proportion of false negatives among those hypotheses that are actually false. The cutoff
qA can be chosen to make this number as small as desired. When δ/σ→∞, then eq. (6) converges
to 0 and increases to 2Φ(an(qA)) − 1 as δ/σ→ 0. Table 4 records values for eq. (6) when δ/σ = 1 so that
the μi differ from μ0 by one half of a standard deviation. There is clearly some improvement but the
bias in favor of false negatives is still readily apparent. It would seem that taking qA =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nλ20 þ 1

p
gives

the best results, but this could be considered s quite conservative. It is also worth remarking that all
the entries in Table 4 can be considered very conservative when large effect sizes are expected.

Now, consider the situation when k = 1000, n = 5, δ = 1 and λ0 = 1.94 is the elicited value. From
Table 3 with qR = 1.0 about 8% false positives are expected a priori, and from Table 4 with qA = 1.0
a worst case upper bound on the a priori expected percentage of false negatives is about 75%. The
top part of Table 5 indicates that with qR = qA = 1.0, then 4.9% (34 of 700) false positives and 0.1%
(3 of 300) false negatives were obtained. With these choices of the cutoffs all hypotheses are classified.
Certainly the upper bound 75% seems far too pessimistic in light of the results, but recall that Table 4

Table 4. Prior probability that a randomly chosen hypothesis produces a false negative when δ/σ = 1,
continuous and discretized () versions, in Example 2.

n λ0 qA (6) n λ0 qA (6)

1 1 1.0 0.704 (0.715) 5 1 1.0 0.631 (0.702)

1.2 0.527 (0.503) 2.0 0.302 (0.112)

1.4 0.141 (0.000) 2.4 0.095 (0.000)

2 1.0 0.793 (0.805) 2 1.0 0.747 (0.822)

2.0 0.359 (0.304) 3.0 0.411 (0.380)

2.2 0.141 (0.000) 4.5 0.084 (0.000)

10 1.0 0.948 (0.955) 10 1.0 0.916 (0.961)

5.0 0.708 (0.713) 10.0 0.552 (0.588)

10.0 0.070 (0.000) 22.0 0.080 (0.000)

Table 5. Confusion matrices for Example 2 with k = 1000 when 700 of the μi equal 0 and 300 of the μi equal 2.

Decision μ = 0 μ = 2

Accept μ = 0 using qA = 1.0 666 3

Reject μ = 0 using qR = 1.0 34 297

Not classified 0 0

Accept μ = 0 using qA = 3.0 419 0

Reject μ = 0 using qR = 0.5 9 287

Not classified 272 13
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is computed at the false values μ = ±0.5. The relevant a priori expected percentage of false negatives
when μ = ±2.0 is about 3.5%. The bottom part of Table 5 gives the relevant values when qR = 0.5
and qA = 3.0. In this case, there are 2.1% (9 of 428) false positives and 0% false negatives, but 39.9%
(272 of 700) of the true hypotheses and 4.3% (13 of 300) of the false hypotheses were not classified
as the relevant relative belief ratio lay between qR and qA. Thus, being more conservative has reduced
the error rates, but with the drawback that a large proportion of the true hypotheses don’t get
classified. The procedure has worked well in this example, but of course the error rates can be
expected to rise when the false values move towards the null and improve when they move away from
the null.

What is implemented in an application depends on the goals. If the primary purpose is to protect
against false positives, then Table 3 indicates that this is accomplished fairly easily. Protecting against
false negatives is more difficult; as the actual effect sizes are not known a decision has to be made.
Note that choosing a cutoff is equivalent to saying that one will only acceptH0i if the belief in the truth
of H0i has increased by a factor at least as large as qA. Computations such as those in Table 4 can be
used to provide guidance, but there is no avoiding the need to be clear about what effect sizes are
deemed to be important or the need to obtain more data when this is necessary. With the relative
belief multiple testing algorithm error rates are effectively controlled, but there may be many true
hypotheses not classified.

The idea of controlling the prior probability of a randomly chosen hypothesis yielding a false positive
or a false negative via eq. (5) or eq. (6), respectively, can be extended. For example, consider the prior
probability that a random sample of l from k hypotheses yields at least one false positive

1�
k
l

� X
fi1, : : : , ilg⊂f1, : : : , kg

M

�
at least one of RBijðψ0ij jXÞ < qR

for j = 1, : : : , l jψ0i1 , : : : ,ψ0il

�
(7)

In the context of the examples in this paper, and many others, the term in eq. (7) corresponding to
{i1, : : : , il} equals M(at least one of RBijðψ0ij jXÞ < qR for j = 1, : : : , l | ψ0). The following result leads
to an interesting property for eq. (7).

Lemma 1: Let (Ω, F , P) be a probability model and B = fA1, : : : ,Akg ⊂ F . The probability that at
least one of l≤ k randomly selected events from B occurs is increasing in l.

Proof: Let Δ(i) be the event that exactly i of A1, : : : ,Ak ∈ F occur, so that ∪k
i=1Ai = ∪k

i=1ΔðiÞ; note
that the Δ(i) are mutually disjoint. When l< k,

Sl, k =
X

fi1, : : : , ilg⊂f1, : : : , kg
IAi1

∪ : : :∪Ail
=
�
k

l

�Xl−1
i=0

IΔðk−iÞ þ
Xk−1
i=l

��
k

l

�
−
�
i

l

��
IΔðk−iÞ

=
�
k

l

�Xk−1
i=0

IΔðk−iÞ −
Xk−1
i=l

�
i

l

�
IΔðk−iÞ

and Sk, k = IA1∪ : : :∪Ak
. Now, consider

�
k
l

�
−1
Sl, k −

�
k

l − 1

�
−1
Sl, k, which equals

1�
k
l

� X
fi1, : : : , ilg⊂f1, : : : , kg

IAi1
∪ : : :∪Ail

−
1�
k

l − 1

� X
fi1, : : : , il−1g⊂f1, : : : , kg

IAi1
∪ : : :∪Ail−1

(8)
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If l = k, then eq. (8) equals IA1∪ : : :∪Ak
−
P

k−1
i=0 IΔðk−iÞ þ IΔð1Þ = IA1∪ : : :∪Ak

−
P

k−2
i=0 IΔðk−iÞ , which is

nonnegative. If l < k, then eq. (8) equals
�

k
l − 1

�
−1
IΔðk−lþ1Þ þ

P
k−1
i=l

��
i

l − 1

	�
k

l − 1

	
−1
−�

i
l

	�
k
l

	
−1

�
IΔðk−iÞ, which is nonnegative because an easy calculation shows that each term in

the second sum is nonnegative. The expectation of eq. (8) is then nonnegative and this establishes
the result.

It follows, by taking Ai = {x : RBi(ψ0i | x)< qR}, that eq. (7) is an upper bound on the prior probability
that a random sample of l′ hypotheses yields at least one false positive whenever l′≤ l. Thus, eq. (7)
leads to a more rigorous control over the possibility of false positives. A similar result is obtained
for false negatives.

Applications
We now consider the sparsity problem.

Example 3. Testing for sparsity.

Consider the context of Example 1. A natural approach to inducing sparsity is to estimate μi by μ0
whenever RBi(μ0 | x)> qA. From the simulation it is seen that this works extremely well when qA = 1
for both k = 10 and k = 1000. It also works when k = 1000 and qA = 3, in the sense that the error rate
is low, but it is conservative in the amount of sparsity it induces in that case. Again, the goals of the
application will dictate what is appropriate.

Another Bayesian method for inducing sparsity is to use the Bayesian Lasso as per Park and Casella
(2008) and based on Tibshirani (1996). The prior here is a product of independent Laplace distribu-

tions, namely
Q

k
i=1½ð

ffiffiffi
2

p
λ0σÞ−k × expf−ð ffiffiffi

2
p

=λ0σÞ
P

k
i=1 j μi − μ0 j g�, where σ is assumed known and

μ0, λ0 are hyperparameters. Note that each Laplace prior has mean μ0 and variance λ20σ
2. Using the

elicitation algorithm provided in Example 1 but replacing the normal prior with a Laplace prior leads
to the assignment μ0 = (ml+mu)/2, λ0 = (mu −ml)/2σG

−1(0.995), where G−1(p) = 2−1/2 log 2p when
p ≤ 1/2, G−1(p) = −2−1/2 log 2(1 − p), where p ≥ 1/2 and G−1 denotes the quantile function
of a Laplace distribution with mean 0 and variance 1. With the specifications used in the simulations
of Example 1, this leads to μ0 = 0 and λ0 = 1.54, which implies a smaller variance than the value
λ0 = 1.94 used with the normal prior, and therefore the Laplace prior is more concentrated about 0.

The posteriors for the μi are independent with the density for μi proportional to
expf−nðxi − μiÞ2=2σ2 −

ffiffiffi
2

p j μi − μ0 j =λ0σg giving the MAP estimator

μiMAPðxÞ =

8><
>:

xi þ
ffiffiffi
2

p
σ=λ0n, xi < μ0 −

ffiffiffi
2

p
σ=λ0n

μ0, μ0 −
ffiffiffi
2

p
σ=λ0n ≤ xi ≤ μ0 þ

ffiffiffi
2

p
σ=λ0n

xi −
ffiffiffi
2

p
σ=λ0n, xi > μ0 þ

ffiffiffi
2

p
σ=λ0n

The MAP estimate of μi is sometimes forced to equal μ0, although this effect is negligible wheneverffiffiffi
2

p
σ=λ0n is small.

The Lasso induces sparsity through estimation by taking λ0 to be small. By contrast, the evidential
approach, based on the normal prior and the relative belief ratio, induces sparsity through taking λ0
large. The advantage to this latter approach is that by taking λ0 large, prior–data conflict is avoided.
When taking λ0 small, the potential for prior–data conflict increases, as the true values can be deep
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into the tails of the prior. For example, for the simulations of Example 1,
ffiffiffi
2

p
σ=λ0n = 0.183, which is

smaller than the δ/2 = 0.5 used in the relative belief approach with the normal prior. Therefore, it can
be expected that the Lasso will do worse here, and this is reflected in Table 6 in which there are far too
many false negatives. To improve this, the value of λ0 needs to be reduced; however, note that this is
determined by an elicitation and there is the risk of then encountering prior–data conflict. Another
possibility is to implement the evidential approach with the elicited Laplace prior and the discretiza-
tion as done with the normal prior, and then results similar to those obtained in Example 1 can be
expected.

It is also interesting to compare the MAP estimation approach and the relative belief approach with
respect to the conditional prior probabilities of μi being assigned the value μ0 when the true value
actually is μ0. It is easily seen that, based on the Laplace prior, MðμiMAPðxÞ = μ0 j μ0Þ =
2Φð ffiffiffi

2
p

=λ0
ffiffiffi
n

p Þ − 1, and this converges to 0 as n →∞ or λ0 →∞. For the relative belief
approach M(RBi(μ0 | x) > qA | μ0) is the relevant probability. With either the normal or Laplace
prior M(RBi(μ0 | x)> qA | μ0) converges to 1 both as n→∞ and as λ0→∞. Therefore, with enough
data the correct assignment is always made using relative belief but not with MAP based on the
Laplace prior.

The Laplace and normal priors work equally with the relative belief multiple testing algorithm but
there are no advantages to using the Laplace prior. One could argue too that the singularity of the
Laplace prior at its mode makes it an odd choice and there doesn’t seem to be a good justification
for this. Furthermore, the computations are harder with the Laplace prior, particularly with more
complex models, and therefore using a normal prior is preferable overall.

An example with considerable practical significance is now considered.

Example 4. Full rank regression.

Suppose the basic model is given by y = β0 + β1x1 + : : : + βkxk + z = β0 + x′β1:k + z, where the xi
are predictor variables, z ∼ N(0, σ2) and β and σ2 are unknown. The problem of interest is testing
H0i : βi = 0 for i = 1, : : : , k to establish which variables have any effect on the response. It is assumed
that the observed values of the predictor variable have been standardized so that for observations
(y, X) ∈ Rn × Rn×(k+1), where X = (1, x1, : : : , xk) is of rank k+1, then 1′xi = 0 and ||xi||

2 = 1 for
i = 1, : : : , k. Note that (b, s), where b = (X′X)−1X′y and s = ||y − Xb||, is an MSS for this model,
and model checking can be carried out by considering functions of the standardized residuals
r = (y − Xb)/s as this has a distribution independent of (β, σ2). The skewness and kurtosis statistics
are such functions and it is straightforward to simulate from their distributions to determine if their
observed values are surprising.

The prior distribution of (β, σ2) is taken to be

β j σ2 ∼ Nkþ1ð0, σ2Σ0Þ, 1=σ2 ∼ gammarateðα1, α2Þ (9)

Table 6. Confusion matrices using Lasso with k = 1000 when 700 of the μi equal 0 and 300 of the μi equal 2 in
Example 3.

Decision μ = 0 μ = 2

Accept μ = 0 using qA = 1.0 227 0

Reject μ = 0 using qA = 1.0 473 300
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for some hyperparameters Σ0 and (α1, α2). Note that this may entail subtracting a known, fixed
constant from each y value so that the prior for β0 is centered at 0. Taking 0 as the central value for
the priors on the remaining βi seems appropriate when the primary concern is whether or not each
xi is having any effect. The marginal prior for βi is then fðα2=α1Þσ20iig1=2t2α1 , where t2α1

denotes the
t distribution on 2α1 degrees of freedom, for i = 0, : : : , k. Hereafter, we will take Σ0 = λ20Ikþ1 although
it is easy to generalize to more complicated choices.

The elicitation of the hyperparameters is carried out via an extension of a method developed by
Cao et al. (2014) for the multivariate normal distribution. Suppose that it is known with virtual cer-
tainty, based on our knowledge of the measurements being taken, that β0+ x′β1:k will lie in the inter-
val (−m0, m0) for some m0> 0 for all x∈ R, where R is a compact set centered at 0. On account of the
standardization, R ⊂ [−1, 1]k. Again “virtual certainty” is interpreted as probability greater than
or equal to γ, where γ is some large probability like 0.99. Therefore, the prior on β must satisfy
2Φ(m0/σλ0{1+ x′x}1/2)− 1≥ γ for all x∈ R, and this implies that

σ ≤ m0=λ0τ0zð1þγÞ=2 (10)

where τ20 = 1þmaxx∈R jjxjj2 ≤ 1þ k with equality when R = [−1, 1]k.

An interval that will contain a response value y with virtual certainty, given predictor values x, is
β0+ x′β1:k ± σz(1+γ)/2. Suppose that we have lower and upper bounds s1 and s2 on the half-length of
this interval so that s1≤ σz(1+γ)/2≤ s2 or, equivalently,

s1=zð1þγÞ=2 ≤ σ ≤ s2=zð1þγÞ=2 (11)

holds with virtual certainty. Combining eq. (11) with eq. (10) implies λ0 =m0/s2τ0.

To obtain the relevant values of α1 and α2 let G(α1, α2,⋅) denote the cdf of the gammarate(α1, α2)
distribution, and note that G(α1, α2, z) = G(α1, 1, α2z). Therefore, the interval for 1/σ2

implied by eq. (11) contains 1/σ2 with virtual certainty, when α1, α2 satisfy
G−1ðα1, α2, ð1þ γÞ=2Þ = s−21 z2ð1þγÞ=2,G

−1ðα1, α2, ð1 − γÞ=2Þ = s−22 z2ð1−γÞ=2, or equivalently

Gðα1, 1, α2s−21 z2ð1þγÞ=2Þ = ð1þ γÞ=2 (12)

Gðα1, 1, α2s−22 z2ð1−γÞ=2Þ = ð1 − γÞ=2 (13)

It is a simple matter to solve these equations for (α1, α2). For this choose an initial value for α1 and, using
eq. (12), find z such that G(α1, 1, z) = (1 + γ)/2, which implies α2 = z=s−21 z2ð1þγÞ=2. If the left side of

eq. (13) is less (or greater) than (1− γ)/2, then decrease (or increase) the value of α1 and repeat step 1.
Continue iterating this process until satisfactory convergence is attained.

Evans and Moshonov (2006) showed that when checking for prior–data conflict in such a context it is
better to check the components of the prior sequentially as this helps to pinpoint where any failure in
the prior occurs. First, the prior on σ2 is checked using the tail probability based on the prior
predictive for s and, if this component passes, then the prior on β is checked based on the conditional
prior-predictive of b given s. If conflict is found, the methods discussed by Evans and Jang (2011b) are
available to modify the prior.

Assuming that X is of rank k+1, the posterior of (β, σ2) is given by

β j y, σ2 ∼ Nkþ1ðβðX, yÞ, σ2ΣðXÞÞ, 1=σ2 j y ∼ gammarateððnþ 2α1Þ=2, α2ðX, yÞ=2Þ (14)
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where βðX, yÞ = ΣðXÞX 0Xb,ΣðXÞ = ðX 0X þ Σ−1
0 Þ−1 and α2(X, y) = ||y − Xb||2 + (Xb)′(In − XΣ(X)X′)

Xb+ 2α2. Then the marginal posterior for βi is given by βi(X, y) + {α2(X, y)σii(X)/(n+ 2α1)}
1/2tn+2α1

and the relative belief ratio for βi at 0 equals

RB
i
ð0 jX, yÞ =

Γ
�
nþ 2α1þ1

2

	
Γðα1Þ

Γ
�
2α1þ1

2

	
Γ
�
nþ 2α1

2

	
�
1þ β2i ðX, yÞ

α2ðX, yÞσiiðXÞ
�−nþ2α1þ1

2

×
�
α2ðX, yÞσiiðXÞ

α22λ
2
0

�
−1
2

(15)

Rather than using eq. (15), however, the distributional results are used to compute the discretized
relative belief ratios as in Example 1. For this δ> 0 is required to determine an appropriate discretiza-
tion and it will be assumed here that this is the same for all the βi, although the procedure can be easily
modified if this is not the case in practice. Note that such a δ is effectively determined by the amount
that xiβi will vary from 0 for x ∈ R. As xi ∈ [−1, 1], then |xiβi| ≤ δ provided that |βi| ≤ δ. When this
variation is suitably small as to be immaterial, then such a δ is appropriate for saying βi is effectively 0.
Determination of the hyperparameters and δ is dependent on the application.

Again inference can be made concerning ξ = Ξ(β, σ2), the proportion of the βi effectively equal to 0. As
in Example 1, however, we can expect bias when the amount of variability in the data is large relative
to δ or the prior is too diffuse. To implement the relative belief multiple testing algorithm, the
quantities eqs. (5) and (6) need to be computed to determine qR and qA, respectively. The conditional
prior distribution of (b, ||y− Xb||2), given (β, σ2), is b ∼Nk+1(β, σ

2(X′X)−1), statistically independent
of ||y− Xb||2∼ gamma((n− k − 1)/2, σ−2/2). Thus, computing eqs. (5) and (6) can be carried out by
generating (β, σ2) from the relevant conditional prior, generating (b, ||y − Xb||2) given (β, σ2), and
using eq. (15).

To illustrate these computations the diabetes data set discussed by Efron et al. (2004) and Park and
Casella (2008) is now analyzed. With γ = 0.99, the valuesm0 = 100, s1 = 75, s2 = 200 were used to deter-
mine the prior together with τ0 = 1.05 determined from the X matrix. This led to the values λ0 = 0.48,
α1 = 7.29, α2 = 13641.35 being chosen for the hyperparameters. Using the methods developed by
Evans and Moshonov (2006), a first check was made on the prior on σ2 against the data, and a tail
probability equal to 0.19 was obtained indicating there is no prior–data conflict with this prior.
Given no prior–data conflict at the first stage, the prior on β was then checked and the relevant tail
probability of 0.00 was obtained indicating a strong degree of conflict. Following the argument of
Evans and Jang (2011b), the value of λ0 was increased to choose a prior that was weakly informative
with respect to our initial choice. This led to choosing the value λ0 = 5.00, and the relevant tail
probability equals 0.32, so there is no conflict.

Using this prior, the relative belief estimates, ratios, and strengths are recorded in Table 7. This shows
that there is strong evidence against βi = 0 for the variables sex, bmi, map, and ltg and no evidence
against βi = 0 for any other variables. There is strong evidence in favor of βi = 0 for age and ldl, mod-
erate evidence in favor of βi = 0 for the constant, tc, tch, and glu and perhaps only weak evidence in
favor of βi = 0 for hdl.

As previously discussed, it is necessary to consider the issue of bias, namely to compute the prior
probability of getting a false positive for different choices of qR and the prior probability of getting a
false negative for different choices of qA. The value of eq. (5) is 0.0003 when qR = 1, and therefore there
is virtually no bias in favor of false positives and one can feel confident that the predictors identified as
having an effect do so. The story is somewhat different, however, when considering the possibility of
false negatives via eq. (6). For example, with qA = 1 then eq. (6) equals 0.9996 and when qA = 100 then
eq. (6) equals 0.7998. Thus, there is substantial bias in favor of the null hypotheses and undoubtedly
this is due to the diffuseness of the prior. The implication is that we cannot be entirely confident
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concerning those βi assigned to be equal to 0. Recall that the first prior proposed led to prior–data
conflict, and thus a much more diffuse prior obtained by increasing λ0 was substituted. The bias in
favor of false negatives with this prior could be reduced by making the prior less diffuse by lowering
λ0, but we know that if it is lowered too much prior–data conflict arises. Thus, there is a trade-off
between lowering the bias in favor and avoiding prior–data conflict. In any case, determining a value
of λ0 in such a fashion seems inappropriate becauase then the prior becomes too dependent on the
data and we do not advocate this. The real cure for the bias in an application is to collect more data,
and the amount necessary can be determined by the bias calculations.

Next we consider the application to regression with k+ 1> n.

Example 5. Non-full rank regression.

In a number of applications k+ 1> n and thus X is of rank l< n. In this situation, suppose {x1, : : : , xl}
forms a basis for L(x1, : : : , xk), perhaps after relabeling the predictors, and write X = (1 X1 X2), where
X1 = (x1 : : : xl). For given r = (X1 X2)β1:k there will be many solutions β1:k. A particular solution is given
by β1∶k� = ðX1ðX 0

1X1Þ−1 0Þ 0r. The set of all solutions is then given by β1∶k� þ kerðX1 X2Þ, where
kerðX1 X2Þ = fð−B 0 Ik−lÞ 0η∶η ∈ Rk−lg,B = ðX 0

1X1Þ−1X 0
1X2, and the columns of C = (−B′ Ik−l)′ give

a basis for ker(X1 X2). As sparsity is expected for β1:k, it is natural to consider the solution
that minimizes ||β1:k||

2 for β1∶k ∈ β1∶k� þ LðCÞ. Using β1∶k� , and applying the Sherman–Morrison–
Woodbury formula to C(C′C)−1C′, this is given by the Moore–Penrose solution

βMP
1∶k = ðIk − CðC 0CÞ−1C 0Þβ1∶k� = ðIl BÞ 0ω1∶l (16)

where ω1:l = (Il+ BB′)−1(β1:l+ Bβl+ 1:k).

From eq. (9) with Σ0 = λ20Ikþ1, the conditional prior distribution of (β0, ω1:l) given σ2 is
β0 j σ2 ∼ Nð0, σ2λ20Þ, independent of ω1∶l j σ2 ∼ Nlð0, σ2λ20ðIl þ BB 0Þ−1Þ, which, using eq. (16), implies
βMP
1∶k j σ2 ∼ Nkð0, σ2Σ0ðBÞÞ, conditionally independent of β0, where

Σ0ðBÞ = λ20

� ðIl þ BB 0Þ−1 ðIl þ BB 0Þ−1B
B 0ðIl þ BB 0Þ−1 B 0ðIl þ BB 0Þ−1B

�

Table 7. Relative belief estimates, relative belief ratios, and strengths for assessing no effect for the diabetes data
in Example 4.

Variable Estimates RBi(0 | X, y) Strength

Constant 2 2454.86 0.44

age −4 153.62 0.95

sex −224 0.13 0.00

bmi 511 0.00 0.00

map 314 0.00 0.00

tc 162 33.23 0.36

ldl −20 57.65 0.90

hdl 167 27.53 0.15

tch 114 49.97 0.37

ltg 496 0.00 0.00

glu 77 66.81 0.23
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With 1/σ2∼ gammarate(α1, α2), this implies that the unconditional prior of the i-th coordinate of
βMP
1∶k is ðλ20α2σ2iiðBÞ=α1Þ1=2t2α1 .

Putting X� = ð1 X1 þ X2B 0Þ gives the full rank model y j β0,ω1∶l , σ2 ∼ NnðX�ðβ0,ω 0
1∶lÞ 0, σ2InÞ. As in

Example 4, then ðβ0,ω1∶lÞjy,σ2∼NlðωðX�, yÞ,σ2ΣðX�ÞÞ, 1=σ2 jy∼gammarateððnþ2α1Þ=2,α2ðX�, yÞ=2Þ
where ωðX�, yÞ=ΣðX�ÞX 0

�X�b�,b�=ðX 0
�X�Þ−1X 0

�y and

Σ−1ðX�Þ =
�
n 0

0 ðX1 þ X2B 0Þ 0ðX1 þ X2B 0Þ

�
þ λ−20

�
1 0

0 ðIl þ BB 0Þ

�
,

α2ðX�, yÞ = jjy − X�b�jj2 þ ðX�b�Þ 0ðIn − X�ΣðX�ÞX 0�ÞX�b� þ 2α2

Now, noting that (X1 + X2B′)′(X1 + X2B′) = (Il + BB′)X′1X1(Il + BB′), this implies b 0� =
ðy, ðIl þ BB 0Þ−1b1Þ, where b1 = ðX 0

1X1Þ−1X 0
1y is the least-squares estimate of β1:l, and

ΣðX�Þ =
�
nþ λ−20 0

0 ðIl þ BB 0ÞX 0
1X1ðIl þ BB 0Þ þ λ−20 ðIl þ BB 0Þ

�−1
,

ωðX�, yÞ = ΣðX�ÞX 0�X�b� =
�

ny=ðnþ λ−20 Þ
ðIl þ BB 0 þ λ−20 ðX 0

1X1Þ−1Þ−1b1

�

Using eq. (16), then β0 j y, σ2 ∼ Nðnðnþ λ−20 Þ−1y, σ2ðnþ λ−20 Þ−1Þ, independent of
βMP
1∶k j y, σ2 ∼ NkðβMPðX, yÞ, σ2ΣMPðXÞÞ, where

βMPðX, yÞ =
�

Db1
B 0Db1

�
, ΣMPðXÞ =

�
E EB
B 0E B 0EB

�

with D = ðIl þ BB 0 þ λ−20 ðX 0
1X1Þ−1Þ−1 and E = ððIl þ BB 0ÞðX 0

1X1ÞðIl þ BB 0Þ þ λ−20 ðIl þ BB 0ÞÞ−1. The
marginal posterior for βMP

i is then given by βMP
i ðX, yÞ þ

n
α2ðX�, yÞσMP

ii ðXÞ=ðnþ 2α1Þ
o
1=2

tnþ2α1 .

Relative belief inferences for the coordinates of βMP
1∶k can now be implemented just as in Example 4.

We consider a numerical example in which there is considerable sparsity. For this let X1 ∈ Rn×l be
formed by taking the second through l-th columns of the (l + 1)-dimensional Helmert matrix,
repeating each row m times and then normalizing. Thus, n =m(l + 1) and the columns of X1 are
orthonormal and orthogonal to 1. It is supposed that the first l1≤ l of the variables giving rise to the
columns of X1 have βi ≠ 0, whereas the last l− l1 have βi = 0 and that the variables corresponding to
the first l2 ≤ k − l columns of X2 = X1B ∈ Rn×(k−l) have βi ≠ 0, whereas the last k − l − l2 have βi = 0.
The matrix B is obtained by generating B = diag(B1, B2), where B1 = (z1/||z1|| : : : zl2/||zl2||) with
z1, : : : , zl2 ∼

i.i.d.
Nl1ð0, IÞ independent of B2 = ðzl2þ1=jjzl2þ1jj : : : zk−l−l2=jjzlk−l−l2 jjÞ with zl2þ1, : : : , zk−l−l2

IID Nl−l(0, I). Note that this ensures that the columns of X2 are all standardized. Furthermore, because
it is assumed that the last l − l1 variables of X1 and the last k − l − l2 variables of X2 don’t have an
effect, B is necessarily of the diagonal form given. For, if it was allowed that the last k− l− l2 columns
of X2 were linearly dependent on the the first l1 columns of X1, then this would induce a dependence
on the corresponding variables, and this is not the intention in the simulation. Similarly, if the first l2
columns of X2 were dependent on the last l− l1 columns of X1, then this would imply that the varia-
bles associated with these columns of X1 have an effect, and this is not the intention.

The sampling model is then prescribed by setting l = 10, l1 = 5, l2 = 2, with βi = 4 for i = 1, : : : , 5, 11, 12
with the remaining βi = 0, σ2 = 1, m = 2, therefore n = 22 and we consider various values of k≥ l. Note
that a different data set was generated for each value of k. The prior is specified as in Example 4, where
the values λ20 = 4, α1 = 11, α2 = 12 were chosen so that there will be no prior–data conflict arising
with the generated data. Also, we considered several values for the discretization parameter δ.
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A hypothesis was classified as true if the relative belief ratio was >1 and classified as false if it was <1.
Table 8 gives the confusion matrices with δ = 0.1. The value δ = 0.5 was also considered, but there was
no change in the results.

One fact stands out immediately, namely that in all of these examples only one misclassification was
made and this was in the full rank (k = 10) case where one hypothesis that was true was classified as
a positive. The effect sizes that exist are reasonably large, and thus it can’t be expected that the same
performance will arise with much smaller effect sizes, but it is clear that the approach is robust to
the number of hypotheses considered. It should also be noted, however, that the amount of data is
relatively small and the success of the procedure will only improve as this increases. This result can,
in part, be attributed to the fact that a logically sound measure of evidence is being used.

Conclusions
The relative belief approach to inference has been applied to problems of practical significance. The
central feature is that the inferences are based upon a proper measure of evidence. This approach
avoids many of the problems that arise with p-values. For example, there is a natural cutoff to deter-
mine when there is either evidence for or against. Given a measure of evidence, a concern with
Bayesian methodology can be addressed, namely determining whether or not the ingredients bias
the results. Bias calculations play a key role in the multiple testing algorithm and its application to
sparsity through the a priori control of false positives and negatives.

There are a number of ingredients that need to be selected to implement the relative belief multiple
testing algorithm. Perhaps the most important of these is the model and the most controversial is
the prior. For the prior, elicitation algorithms have been provided for each example based on the user
being able to specify bounds on parameters that hold with virtual certainty. Given that a measurement
process was used in the data collection, this implies restrictions for the values of parameters. For

Table 8. Confusion matrices for the numerical example in Example 5.

k = 10 Classified positive Classified negative Total

True positive 5 0 5

True negative 1 4 5

Total 6 4 10

k = 20 Classified positive Classified negative Total

True positive 7 0 7

True negative 0 13 13

Total 7 13 20

k = 50 Classified positive Classified negative Total

True positive 7 0 7

True negative 0 43 43

Total 7 43 50

k = 100 Classified positive Classified negative Total

True positive 7 0 7

True negative 0 93 93

Total 7 93 100
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example, suppose interest is in the mean of a response variable corresponding to some kind of length.
Each length is measured to a certain accuracy and there is an upper bound on what length can be
obtained using a particular measurement technology. Thus, such bounds on the mean response are
definitely available and how tight they are depends on what additional information is available on
the context. It is also worth noting that there is no reason why some other elicitation algorithm cannot
be used if this is felt to be appropriate. There is also the choice of (qR, qA), but these are chosen based
on the bias calculations to control for false positives and false negatives and the user will have to select
these after considering what proportions of errors are tolerable.

The value of δ in hypothesis assessment problems is seemingly another choice but practical aspects of
the measurement process involved in data collection dictate what values make sense. For example,
there is no point in considering differences from a mean >0.5 cm if the measurements producing
the data are only taken to this accuracy. This provides a lower bound on δ and the application may
allow for a larger value. It is comforting, however, that results are reasonably robust to this choice.
Determining δ for an arbitrary parameter of interest ψ is not necessarily straightforward, but some
guidance, when ψ is a probability and δ is either absolute or relative error, can be found in the work
of Al-Labadi et al. (2017).

No mention has been made in the paper concerning the false discovery rate (FDR) approach to multi-
ple testing. Current approaches base this on p-values, but presumably there is no reason
why a valid measure of evidence such as the relative belief ratio couldn’t be used instead.
It should also be noted that the FDR approach is somewhat different as it does not imply control over
both false positive and false negatives, which has been our intent here. The relationship between the
approach of this paper and controlling something like the FDR is a topic for further investigation.
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