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Abstract
Mercury (Hg) is a global pollutant emitted primarily as gaseous Hg0 that is deposited in aquatic and
terrestrial ecosystems following its oxidation to HgII. From that point, microbes play a key role in
determining Hg’s fate in the environment by participating in sequestration, oxidation, reduction,
and methylation reactions. A wide diversity of chemotrophic and phototrophic microbes occupying
oxic and anoxic habitats are known to participate directly in Hg cycling. Over the last few years,
new findings have come to light that have greatly improved our mechanistic understanding of
microbe-mediated Hg cycling pathways in the environment. In this review, we summarize recent
advances in microbially mediated Hg cycling and take the opportunity to compare the relatively
well-studied chemotrophic pathways to poorly understood phototrophic pathways. We present how
the use of genomic and analytical tools can be used to understand Hg transformations and the physio-
logical context of recently discovered cometabolic Hg transformations supported in anaerobes and
phototrophs. Finally, we propose a conceptual framework that emphasizes the role that phototrophs
play in environmental Hg redox cycling and the importance of better characterizing such pathways
in the face of the environmental changes currently underway.

Key words: mercury methylation, methylmercury demethylation, biogeochemistry, photosynthesis,
mercury redox cycling, climate change

Introduction
Mercury (Hg) is a global pollutant emitted from natural sources such as volcanic activity and forest
fires and anthropogenic sources such as mining and coal combustion (Obrist et al. 2018). Hg is emit-
ted primarily in its elemental and highly volatile form Hg0, which can travel in the atmosphere for up
to a year before being deposited in aquatic and terrestrial ecosystems as oxidized HgII (Selin et al.
2007). From that point, Hg can be subject to a variety of transformations including burial into sedi-
ments; reduction, which results in Hg0 re-emission to the atmosphere; and methylation, which con-
verts inorganic Hg to toxic monomethylmercury (MeHg) that bioaccumulates in animals
(Sunderland 2007) and plants such as rice (Zhang et al. 2010).

Microbes play a key role in Hg transformations. They can produce or degrade MeHg, reduce HgII,
oxidize Hg0, and sequester a variety of Hg chemical species (as summarized by Barkay and Wagner-
Dobler 2005 and Grégoire and Poulain 2014). Generally speaking, microbial Hg transformations
occur through cometabolic processes (e.g., encoded by the hgcAB gene cluster) or dedicated detoxifi-
cation strategies (e.g., encoded by the mer operon). Hg sequestration can occur through dedicated
pathways (e.g., phytochelatins binding Hg (Rauser 1990; Kawakami et al. 2006)) or cometabolic proc-
esses (e.g., HgS formation during photosynthesis (Kelly et al. 2007)). Indeed, a wide diversity of
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microbes can mediate Hg cycling pathways in a variety of habitats; aerobic, anaerobic, chemotrophic,
and phototrophic microbes all influence the fate of Hg in the environment.

In an earlier review, we synthesized the state of knowledge on Hg transformations mediated by photo-
trophic microbes (Grégoire and Poulain 2014). We highlighted that phototrophic Hg cycling path-
ways were poorly understood compared with their chemotrophic counterparts. We also discussed
why this was an important knowledge gap to address because of the drastic changes predicted to occur
in phototrophic communities in response to global environmental changes such as the increased fre-
quency, magnitude, and duration of phytoplankton blooms (Krabbenhoft and Sunderland 2013).

Although the environmental contributions of phototrophs to environmental Hg cycling remain
understudied compared with their chemotrophic counterparts, considerable research has been done
in recent years to better understand the role of phototrophs in the global Hg cycle. Here, we offer
an update to our initial literature review comparing chemotrophic and phototrophic Hg cycling path-
ways including 68 research papers published since 2014 (Grégoire and Poulain 2014). Our objective
with this review was to summarize the recent advances in our understanding of chemotrophic and
phototrophic Hg cycling pathways. As part of this, we highlight outstanding knowledge gaps pertain-
ing to microbially mediated Hg cycling emphasizing recent efforts that have helped better understand
the role of phototrophs in Hg cycling. Ultimately, we aim to provide recommendations on how to bet-
ter characterize the environmental and ecological context of microbial Hg cycling in future research.

Chemotrophic mercury transformations

Chemotrophic mercury methylation
Chemotrophic Hg methylation continues to be the most studied microbially mediated Hg transfor-
mation, which is unsurprising given the health concerns surrounding MeHg. At the time of our initial
review, the discovery of the hgcAB gene cluster encoding for Hg methylation had just been published
(Parks et al. 2013). Since this transformational finding in the field of Hg research, there has been a
surge in the number of studies investigating the physiological and environmental controls of Hg
methylation.

On the mechanistic front, computer modeling has shown that the corrinoid protein encoded by hgcA
initiates a key step in MeHg formation by transferring a negatively charged methyl carbanion to an
HgII substrate (Zhou et al. 2014). This process is thought to occur on the inner side of the cell mem-
brane based on observations in spheroplasts (i.e., bacteria partially/wholly devoid of a cell wall) gen-
erated from well-characterized Hg-methylating bacteria (Schaefer et al. 2014b). With respect to the
physiology of Hg methylation, gene deletions targeting hgcAB in Geobacter sulfurreducens PCA, a
well-known Hg methylator with proven Hg redox cycling capabilities, resulted in increased Hg
uptake, HgII reduction, and Hg0 oxidation (Lin et al. 2014a; Qian et al. 2016). In contrast, deleting
the genes encoding for the electron transport machinery essential to HgII reduction (e.g., encoding
for cytochrome c synthesis) in G. sulfurreducens increased the abundance of proteins involved in
the metabolism of C1 compounds potentially involved in Hg methylation (Qian et al. 2016). These
studies suggest that Hg methylation and Hg reduction can compete for common Hg or metabolic sub-
strates inside the cell and support the presence of common physiological controls for both transfor-
mations. Further physiological characterization of strains capable of a suite of Hg transformations
are required to identify potential the metabolic coupling points that exist for competing Hg
transformations.

The discovery of the hgcAB gene cluster has revealed a broader diversity of microbes that can poten-
tially methylate Hg compared with what was known four years ago (Podar et al. 2015). Previously,
representatives within the sulphate-reducing bacteria (SRB) (Choi et al. 1994a, 1994b), iron-reducing
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bacteria (Fleming et al. 2006) and methanogens (Han et al. 2010; Hamelin et al. 2011; Yu et al. 2013)
were known to methylate Hg. Homologues for hgcAB have now been identified in representatives of
the phyla Chloroflexi and Firmicutes (Schaefer et al. 2014a; Christensen et al. 2016); a compilation
of microbial strains harbouring the hgcAB sequence has been published elsewhere (Paranjape and
Hall 2017). Most recently, robust Hg methylation was demonstrated in several cultured methanogen
strains (Gilmour et al. 2018). Such studies exemplify how hgcAB genes can be used to identify Hg
methylators across diverse clades of microbes and provide insight into the environmental controls
of Hg methylation that exist in a variety of habitats.

Mining existing (meta)genomic information for hgcAB sequences has revealed several new environ-
ments that can potentially support Hg methylation including invertebrate digestive tracts, permafrost
soil, hypoxic coastal areas, soda lakes, and thermal springs (Podar et al. 2015). In addition, a number
of field studies have evaluated the presence or quantified the abundance of hgcA gene or hgcAB genes
in habitats including wetland sediments (Bae et al. 2014; Schaefer et al. 2014a; Graham et al. 2018),
wastewater treatment plants (Bravo et al. 2018), rivers near chlor-alkali plants (Bravo et al. 2016),
lake sediments (Ma et al. 2017b), river biofilms (Dranguet et al. 2017), hydroelectric dam sediments
(Ma et al. 2017a), rice paddies (Su et al. 2016; Vishnivetskaya et al. 2018), and Antarctic sea ice
(Gionfriddo et al. 2016). If the number of studies cited above is any indication, the number of habitats
that can support Hg methylation will continue to grow, which will help identify novel and potentially
overlooked Hg methylation hotspots in the environment.

Several of the above-mentioned studies have assessed the distribution the hgcAB gene cluster along-
side the abundance of marker genes used as proxies for microbial metabolisms that support Hg
methylation. Studies using genes such as the dsrAB genes (encoding for subunits of the dissimilatory
sulphite reductase (EC 1.8.99.5)) and the mcrA gene (encoding the methyl-coenzyme M reductase
(EC: 3.1.21)) as proxies for sulphate reduction and methane cycling, respectively, have linked the
abundance of Hg methylation genes to different metabolic functional groups (Bae et al. 2014;
Gionfriddo et al. 2016; Dranguet et al. 2017; Ma et al. 2017b; Bravo et al. 2018). These studies have
led to the discovery that syntrophic microbes, such as those that rely on interspecies hydrogen and
acetate transfer following propionate fermentation for growth, play an important role in Hg methyla-
tion (Bae et al. 2014; Bravo et al. 2018) in environments depleted in sulphate and iron (e.g., terminal
electron acceptors) (Yu et al. 2018). The findings concerning syntrophs highlight the importance of
moving away from studies that use single model organisms to better address how complex microbial
assemblages can influence MeHg production in the environment.

Despite the surge in studies investigating Hg methylation in microbes, whether a physiological pur-
pose for this Hg transformation exists remains unclear. Hg methylation was once thought to be a
detoxification strategy, as studied in the fungus Neurospora crassa (Landner 1971). However, experi-
mental evidence in other microbes, including bacteria and archaea, are currently lacking. Much of the
evidence published to date supports that Hg methylation is a cometabolic, accidental process. In
support of cometabolic Hg methylation, recent studies have shown that organic carbon source com-
position (Bravo et al. 2016; Christensen et al. 2018), electron acceptor availability (Bravo et al. 2018;
Yu et al. 2018), and salinity (Bravo et al. 2016) appear to control the distribution hgcAB genes. With
some of the genetic determinants for Hg methylation now in hand, the field is ripe to explore the
physiological and evolutionary context of Hg methylation in a variety of model organisms.

Despite the recent emphasis on the genetic basis of Hg methylation, research addressing the funda-
mental aspects of Hg bioavailability to methylators continues to expand. Previously, it was thought
that Hg methylation was limited by the availability of inorganic Hg substrates such as HgS, which
was considered poorly bioavailable to methylators in sulphidogenic environments (Liu et al. 2009).
The importance of HgS as a substrate for methylation has recently been revisited in the context of
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how HgS nanoparticle formation controls Hg bioavailability to methylators under anoxic conditions.
It has been shown that HgS particles tend to agglomerate, becoming more crystalline and less bioa-
vailable as they age in the presence of dissolved organic matter (DOM), which can decrease Hg
methylation (Pham et al. 2014). In contrast, it has also been shown that methylation of HgS can
increase in the presence of DOM as a function of thiol content, preventing large and poorly bioavail-
able HgS aggregates from forming (Graham et al. 2013; Graham et al. 2017). Aside from thiols, it has
been suggested that amine and, to a lesser degree, carboxyl functional groups, can also control HgS
aggregation once the binding sites of thiols have been saturated at high Hg to DOM ratios (Mazrui
et al. 2018). These studies suggest that the controls on HgS nanoparticle formation are complex and
reveal the transient nature of how HgS species exert dynamic controls on Hg bioavailability to Hg
methylators.

The bioavailability and toxicity of Hg are controlled, in part, by its affinity for thiol-bearing molecules
such as cysteine. For the sake of brevity, we have omitted discussing mechanisms for Hg uptake and
toxicity in this section as these topics have been recently reviewed elsewhere (Hsu-Kim et al. 2013;
Grégoire and Poulain 2014; Parks and Smith 2016; Mahbub et al. 2017). Instead, we briefly focus on
recent work addressing the role of DOM and thiol-bearing ligands in mediating Hg bioavailability
to Hg methylators.

In a recent study using the model Hg-methylating bacterium G. sulfurreducens PCA, cysteine
inhibited Hg methylation at low concentrations (0.01 to 0.1 μM) but stimulated Hg methylation
at higher concentrations (100 to 1000 μM) when experiments were run for 144 h vs 4 h (Lin
et al. 2015). One potential explanation provided for this trend was that thiols mobilized Hg from
binding sites on the cell membrane to the cytoplasm, where Hg was more bioavailable for methyla-
tion (Liu et al. 2016). The role of functional groups in the cell membrane was recently highlighted
in a study comparing Hg methylation in Desulfovibrio desulfuricans ND132 and G. sulfurreducens
in the presence of two sources of DOM (one of aquatic origin with low aromaticity and the other
of terrestrial origin with relatively higher aromaticity) (Zhao et al. 2017). In this study, MeHg pro-
duction by D. desulfuricans increased with DOM concentration, whereas MeHg production in
G. sulfurreducens decreased (Zhao et al. 2017). Another study examining Hg stable isotope frac-
tionation during Hg methylation in D. desulfuricans and G. sulfurreducens demonstrated that the
same strains accessed different intracellular and extracellular pools of Hg during methylation
(Janssen et al. 2016). These studies highlight that strain-specific characteristics can have a consid-
erable impact on Hg uptake and subsequent methylation. Although the exact nature of the
differences in characteristics has yet to be properly defined, they are clearly important to consider
when extending conclusions drawn from a given model Hg methylator to microbial communities
in the environment.

Chemotrophic methylmercury demethylation
Compared with Hg methylation, MeHg demethylation has been relatively understudied, although
new mechanistic details have emerged for both reductive demethylation (RD) and oxidative demethy-
lation (OD) pathways. Microbes capable of RD harbour the mer operon, which is a series of genes
encoding dedicated Hg scavenging, transport, and detoxification machinery (Barkay et al. 2003;
Parks et al. 2009). Themer operon’s expression is induced as a function of intracellular Hg concentra-
tion and RD is carried out thanks to the presence of merB, which encodes an organomercury lyase
(e.g., MerB) that cleaves MeHg into inorganic HgII and CH4 (Parks et al. 2009). HgII is subsequently
reduced to Hg0 via the mercuric reductase MerA and CH4 and Hg0 can evade the cell (Barkay et al.
2003). In contrast with RD, OD occurs in the absence of dedicated Hg detoxification machinery
and is a non-specific cometabolic process tied to C1 compound metabolism that results in the produc-
tion of HgII and CO2 (Oremland et al. 1991; Hsu-Kim et al. 2013).
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Recent work on MerB has shown that conserved cysteine and aspartic acid residues are essential for
releasing Hg from MerB’s active site following the cleaving of the methyl group (Silva and
Rodrigues 2015). When a serine residue was present in place of aspartic acid, MerB lost its specificity
for MeHg and was also able to bind copper (Cu), although resupplying MerB with Hg successfully
removed Cu from the enzyme’s active site (Wahba et al. 2016). These findings demonstrate that
MeHg can outcompete Cu for the binding site on MerB, but also highlight functional parallels that
may exist between RD and Cu homeostasis that merit further investigation.

Despite MeHg formation occurring predominantly in anoxic environments, broad Hg resistance
strategies relying on MerB have largely been associated with aerobes. Recent work with the model
anaerobe Geobacter bemidjiensis Bem suggests that strategies similar to those encoded by the
mer operon may be present in anaerobes providing them with a means for RD (Lu et al. 2016).
Geobacter bemidjiensis supported a suite of Hg transformation pathways including Hg methylation,
HgII reduction via a MerA-like mechanism, and Hg0 oxidation (Lu et al. 2016). The latter finding is
interesting because, to the best of our knowledge, very few complete mer operons have been reported
for obligate anaerobes. Although these are not the first observations that anaerobes can mediate sev-
eral Hg transformations, they do provide an interesting basis from which to investigate the physio-
logical controls of competing Hg transformations that may occur simultaneously.

Similar to the work done on Hg methylation, new studies have addressed how thiol-bearing ligands
affect RD. In contrast with inorganic Hg, thiol-bearing ligands had little effect on MeHg bioavailabil-
ity in bacteria capable of RD (Escherichia coli and Pseudomonas stutzeri) (Ndu et al. 2016). The same
study found a considerable difference in MeHg demethylation rates for the two strains despite
comparable bioavailability among the different MeHg complexes tested (Ndu et al. 2016). Similar to
what was suggested for Hg methylators, the authors attributed the contrasting results to differences
in MeHg bioavailability associated with strain specific characteristics (Ndu et al. 2016). Although
the authors demonstrated that non-specific binding of MeHg to heat-killed cells rendered a portion
of the MeHg unavailable for demethylation, the exact nature of these binding sites was not further
discussed (Ndu et al. 2016)

A newly discovered OD pathway in methanotrophs serendipitously provides additional links between
Cu metabolism and MeHg demethylation. Methanobactin, a Cu chaperone molecule synthesized by
methanotrophs, was essential for OD (Baral et al. 2014; Lu et al. 2017). Recent findings in the model
methanotroph Methylosinus trichosporium OB3b showed that MeHg demethylation was dependent
on the activity of methanol dehydrogenase (Lu et al. 2017), further supporting a link between
C1 metabolism and OD (Hsu-Kim et al. 2013). Given that C1 metabolism is also tied to Hg methyla-
tion, these results suggest that the availability of C1 compounds in the environment plays an impor-
tant role in mediating MeHg accumulation. That being said, when considering the role of
methanotrophs in OD and its relevance to the environment, one must remember that in most envi-
ronments where methanotrophs are active, MeHg degradation via OD could be overwhelmed by
the large availability of other reduced C1 compounds (e.g., methane). The environmental relevance
of this type of OD remains to be determined.

At the environmental scale, a number of studies have measured MeHg demethylation (many of which
were summarized by Paranjape and Hall 2017); however, few of these studies explicitly discuss the
direct contribution of microbes to demethylation. The fact that many of these systems are net
MeHg sources makes it difficult to investigate the mechanisms supporting MeHg destruction beyond
the laboratory scale. Further investigations into the mechanisms of biotic MeHg sinks may yield
important clues to mitigating MeHg exposure in the environment. To the best of our knowledge, only
one recent study has been published that fits this description. In this work, Kronberg et al. 2018
showed that methanogens are important contributors to OD in a wetland ecosystem known to be a
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sink for MeHg. Together with previous work on methanogens, this finding frames methane cycling
microbes as key players in controlling MeHg levels in the environment.

Chemotrophic mercury reduction
The mercuric reductase MerA encoded by themer operon continues to be one of the best-studied che-
motrophic Hg reduction strategies. Recently, it has been shown that sulphur-oxidizing bacteria carry-
ing merA were not only able to reduce HgS minerals in aquatic environments, but also use HgS as a
sulphur source (Vazquez-Rodriguez et al. 2015). Although it is well established that MerA relies on
the use of nicotinamide adenine dinucleotide phosphate (NADPH) as a redox cofactor for HgII reduc-
tion (Barkay et al. 2003), the link between mer-mediated reduction and the redox state of the cell is
rarely discussed. Recent work with Thermus thermophilus HB27 revealed important links between
cellular redox balance, Hg sequestration and MerA activity (Norambuena et al. 2018). Thermus
thermophilus (alongside other representatives of the Thermus genus) harboured genes upstream of
merA in the mer operon encoding for the synthesis of low molecular weight thiols that buffered Hg
toxicity prior to HgII reduction (Norambuena et al. 2018). The synthesis of cellular redox buffering
compounds proved essential to supporting this Hg detoxification strategy (Norambuena et al. 2018).

Perhaps by further investigating the influence of redox homeostasis on mer-mediated reduction we
can gain insights into how such Hg detoxification strategies evolved across different redox conditions
throughout Earth’s history (Barkay et al. 2010). Therein may lay an explanation for the observation of
a MerA-like reductase in the obligate anaerobe G. bemidjiensis despite such strategies being largely
absent in anaerobes (see the previous section). Perhaps such pathways only occur under specific redox
conditions in the environment that support anaerobic metabolism optimized for cell growth and Hg
detoxification.

Anaerobes such as dissimilatory metal-reducing bacteria continue to be studied with respect to
non-mer-mediated Hg reduction pathways. As previously mentioned, work with G. sulfurreducens
has shown that HgII reduction increased following the deletion of hgcAB (Lin et al. 2014a), as did
the abundance of cytochrome-c proteins supporting HgII reduction (Qian et al. 2016), supporting a
physiological link for both of these Hg transformations. Recently, it has also been shown that HgII

reduction in Shewanella oneidensis MR-1 increased in the presence of natural organic matter
(NOM) (Lee et al. 2018). In this instance, the authors indicated that HgII reduction increased as a
function of electron transfer from S. oneidensis to NOM, which led to the formation of free radicals
that could reduce HgII (Lee et al. 2018).

Novel non-mer-mediated pathways have also recently been discovered in previously untested organ-
isms. Magnetotactic bacteria are now known to reduce HgII during microaerophilic growth via
coupled redox reactions with biogenic magnetite in the membrane of the magnetosome (Liu and
Wiatrowski 2018). Our own research has revealed that HgII reduction is supported in obligate anaer-
obes from the order Clostridiales. We observed that HgII reduction was dependent on the ability of
cells to produce reduced redox cofactors (possibly ferredoxin) via fermentation when pyruvate was
used as a carbon source (Grégoire et al. 2018). Given thatmerA was absent in these strains, our results
support that cells reduced Hg because of its electrophilic nature allowing cells to transfer electron
from reduced redox cofactors to Hg during fermentative growth (Grégoire et al. 2018). This finding
suggests that fermentative Hg reduction may be an important pathway for Hg redox cycling in envi-
ronments devoid of light and electron acceptors (Grégoire et al. 2018). Given that fermentative
microbes occupy a niche similar to that of chemotrophic Hg methylators (Desrochers et al. 2015),
such pathways may also influence the accumulation of MeHg. That being said, the contributions of
fermenters to HgII reduction and the potential influence of such pathways on Hg availability to meth-
ylators have yet to be investigated.
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Chemotrophic mercury oxidation
Hg oxidation still remains one of the most poorly understood chemotrophic Hg transformations, with
the first mechanistic details having only just recently been published. Following the seminal work
demonstrating Hg0 oxidation via redox reactions with thiols in the cell membranes of anaerobes
(Colombo et al. 2013), additional evidence has emerged supporting the presence of a similar pathway
in other obligate and facultative anaerobes (Colombo et al. 2014; Lin et al. 2014b; Lu et al. 2016). It has
also been shown that dead cell material bearing intact thiol groups can catalyze Hg0 oxidation offering
a potentially important route for delivering freshly oxidized HgII to anoxic environments (Colombo
et al. 2014). Hg0 oxidation is thought to be more important in situations where thiol binding site avail-
ability is high relative to low extracellular Hg concentration (Lin et al. 2014b). Given the ubiquitous
nature of thiols in bacterial membranes (Yu et al. 2014), Hg0 oxidation by anaerobes is likely wide-
spread in environments such as waterlogged soils (Mazur et al. 2015; Poulin et al. 2016) and anoxic
lake sediments (Bouffard and Amyot 2009) where Hg0 can dominate Hg speciation. When considered
alongside the growing evidence for anaerobic HgII reduction, these findings show that anaerobes are
poised to be key players in controlling MeHg production in anoxic systems by catalyzing a dynamic
anaerobic redox cycle.

Phototrophic microbial mercury transformations
As outlined in our previous review, there is a growing body of evidence suggesting that oxygenic
and anoxygenic phototrophs can participate in Hg transformations in the environment (Grégoire
and Poulain 2014). Phototroph-mediated Hg cycling pathways stand to be important in environ-
ments where abiotic photochemical Hg transformations are limited (Poulain et al. 2004). Such
habitats could include the metalimnion of thermally stratified lakes (Poulain et al. 2004), microbial
mats (Dupraz and Visscher 2005; Polerecky et al. 2007), and photic surface sediments (Sloth et al.
1996; Rossi et al. 2012) where phototrophs thrive at low light intensities. Despite the potential
for phototrophs to directly influence Hg speciation, considerably fewer studies have addressed
phototrophic Hg cycling in recent years compared with the large body of work that exists on
chemotrophs. That being said, recent research at the laboratory scale has advanced our mechanis-
tic understanding of Hg uptake, toxicity, and transformation in a variety of phototrophic
organisms.

Phototrophic mercury uptake studies
In our initial review, we detailed the existing body of work on the passive and active Hg uptake path-
ways in phototrophs (Grégoire and Poulain 2014). At that time, all of the information available on Hg
uptake in phototrophs was derived from oxygenic phototrophs such as algae, cyanobacteria, and dia-
toms. Since then, new mechanistic details have emerged on the uptake of Hg in the model green alga
Chlamydomonas reinhardtii and, for the first time, in anoxygenic phototrophic purple non-sulphur
bacteria (PNSB).

Transcriptomic evidence has suggested that C. reinhardtii can actively take up inorganic Hg com-
plexes through divalent metal transporters, and organic Hg complexes through amino acid transport-
ers (Beauvais-Fluck et al. 2017), although this was not directly experimentally tested. A similar
mechanism was proposed for model PNSB whereby Hg uptake occurred via Ca2+ transport channels
as an active process (Kis et al. 2017). These findings echo those for chemotrophic anaerobes where
active uptake of Hg occurred through Zn2+ or Mn2+ transporters (Schaefer et al. 2014b; Stenzler
et al. 2017). These studies suggest that Hg uptake via divalent cation transporters is supported across
diverse microbial metabolisms. Given the high metal requirements associated with phototrophy, Hg
uptake via metal transporters is possibly important and may exert a strong influence on downstream
Hg transformations.
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Whereas the effects of DOM on Hg bioavailability to chemotrophs have been extensively studied,
there is little information available for phototrophs (Zhong and Wang 2009). Microbial phototrophy
is not limited to autotrophy. Strategies such as mixotrophy where cells can use light for energy and a
diverse carbon pool for biosynthesis, could lead to Hg uptake via the shuttling of
Hg-DOM complexes into cells (Chiasson-Gould et al. 2014). To the best of our knowledge, the con-
tributions of mixotrophs to Hg uptake in aquatic food webs have only recently been addressed
(Cárdenas et al. 2014; Soto Cárdenas et al. 2018). In these studies, the authors showed that mixotro-
phic ciliates could incorporate Hg through passive diffusion and active uptake linked to bacterivory
(Cárdenas et al. 2014; Soto Cárdenas et al. 2018). Despite mixotrophy being widespread in the envi-
ronment (Raven 2009), the potential implications of mixotrophy on Hg accumulation in aquatic
and terrestrial food webs remain largely unexplored.

Phototrophic mercury methylation
The majority of studies addressing the role of phototrophs in controlling MeHg’s fate focus on bioac-
cumulation in food webs, and fewer studies directly address how phototrophic communities affect
Hg speciation in the environment. Most of the recent work has been conducted on periphytic commun-
ities. These studies face the challenge of distinguishing the direct involvement of phototrophs in
Hg methylation from the indirect role that they have (as primary producers) in supplying nutrients to
chemotrophic Hg methylators in the periphytic matrix (Lanza et al. 2017; Bouchet et al. 2018). In most
cases, MeHg production increased under conditions of higher photosynthetic activity (Gionfriddo
et al. 2016; Olsen et al. 2016; Gentes et al. 2017; Lazaro et al. 2018), but recent work emphasized the
importance of considering diel periphytic dynamics in MeHg production (Bouchet et al. 2018).

Currently, there is very little support for phototrophs participating directly in Hg methylation. Aside
from the initial research cited in our first review (Pongratz and Heumann 1998; Deng et al. 2013),
only one new study has emerged investigating the potential for direct methylation in the cyanobacte-
rium Nostoc paludosum that showed no MeHg production (Franco et al. 2018).

Microbial strains in the phylum Chloroflexi, which includes representatives of the anoxygenic photo-
trophic green non-sulphur bacteria, are now known to host the hgcAB gene cluster. However, the gene
sequences found to date belong to the chemotrophic Dehalococcoidaceae family (Bae et al. 2014;
Schaefer et al. 2014a; Podar et al. 2015). With the increasing diversity of habitats being investigated
for Hg methylation, perhaps a phototrophic representative harbouring the hgcAB gene cluster capable
of methylation may soon be uncovered.

Phototrophic methylmercury demethylation
Previously, there was little to no mechanistic data available for direct phototroph-mediated MeHg
demethylation (Grégoire and Poulain 2014). Recently, Kritee et al. 2017 used Hg stable isotope fractiona-
tion in Isochrysis galbana to demonstrate MeHg demethylation in algal cells. In this study, cells preferen-
tially demethylated lighter MeHg isotopes resulting in a pool of isotopically light HgII (Kritee et al. 2017).
In addition, MeHg demethylation resulted in a positive odd-isotope mass-independent signature that
was characteristic of the photochemical destruction of MeHg and similar to the Hg isotope signa-
ture observed in a variety of marine and freshwater fish (Kritee et al. 2017). This study highlights the
power of Hg stable isotope fractionation to track phototroph-mediated Hg transformations at the
environmental scale.

Phototrophic mercury reduction
Most of the previous evidence for phototroph-mediated Hg reduction stemmed from observations
and experiments performed with oxygenic phototrophs (Grégoire and Poulain 2014). Recent work
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on anoxygenic phototrophic PNSB (Grégoire and Poulain 2016) and Heliobacteria (Grégoire et al.
2018) has provided some of the first mechanistic details for anaerobic phototrophic Hg reduction.

Our work with PNSB demonstrated that HgII was preferentially reduced during photoheterotrophic
growth on reduced organic carbon substrate (e.g., using light as an energy source and generating bio-
mass using an organic carbon source) (Grégoire and Poulain 2016). Under controlled laboratory con-
ditions, we showed that PNSB derived an advantage from sublethal Hg exposure, which we attributed
to the ability of Hg to act as an electron sink during phototrophic growth (Grégoire and Poulain
2016). Large peaks of Hg0 have been reported in the metalimnion of lakes (Poulain et al. 2004), and
anoxygenic phototrophs such as PNSB thrive in environments such as the thermoclines and chemo-
clines of stratified aquatic ecosystems (Schütte et al. 2016) and microbial mats (Schneider
et al. 2013). These metabolically versatile microbes stand to be important players in Hg redox cycling
in environments where light is attenuated and reduced organic carbon is available. Such habitats are
often located at redox interfaces that act as gateways to Hg methylation sites.

Following up on our work with anoxygenic phototrophs, we further discovered that Heliobacteria, a
family of spore-forming fermentative photoheterotrophs of the order Clostridiales, were among
the most efficient Hg reducers reported to date (Grégoire et al. 2018). No apparent dedicated Hg
reduction machinery (i.e., mer operon determinants) was found in the genome of Heliobacterium
modesticaldum Ice1, and HgII reduction most likely occurred as a cometabolic process related to the
availability of reduced redox cofactors (e.g., ferredoxin) (Grégoire et al. 2018). The fact that cometa-
bolic Hg reduction was observed in two phylogenetically and ecologically distinct groups of anoxy-
genic phototrophs suggest that such pathways may be widespread in anoxic habitats offering
phototrophs a means of detoxifying Hg without dedicated enzymatic machinery.

The use of stable Hg isotopes has recently provided unique insights into oxygenic phototrophic
Hg reduction. In the same study addressing MeHg demethylation in I. galbana, cells reduced
lighter HgII isotopes with the strongest fractionation signature occurring within the intracellular pool
of HgII (Kritee et al. 2017). The authors also observed mass-independent fractionation signatures sug-
gesting that Hg was reduced by free radicals inside the cell following binding to thiol functional
groups (Zheng and Hintelmann 2010; Kritee et al. 2017). The prevalence of free radical formation
during oxygenic photosynthesis is such that algal cells could be seen as small photoreactors hosting
Hg photoreduction. Indeed, this study represents a fascinating case of intracellular metal photoreduc-
tion that blurs the lines between abiotic and biotic transformations.

The presence of putative merA homologues in the genomes of some anoxygenic phototrophs
(Mukkata et al. 2015; Pérez et al. 2018) highlights an interesting question regarding Hg tolerance in
phototrophs: do cells preferentially detoxify Hg via cometabolic processes or through the use of dedi-
cated reductases? Currently, it seems that phototrophic Hg reduction occurs mostly as a cometabolic
process that relies on core metabolic machinery rather than mer-like determinants, which are largely
absent in phototrophs. That being said, very few studies have been published on the subject and the
presence of such pathways has only been identified for a small number of model organisms. By
exploring this question further we will better define the physiological mechanisms supporting photo-
trophic Hg metabolism. The increasing availability of microbial genomes and genetic tractability of
anoxygenic phototrophs should help address this question in future research.

Clearly, phototrophs are more than just an entry point for Hg into food webs. The mechanistic find-
ings mentioned in this section frame photosynthetic redox homeostasis as a metabolic process
coupled with Hg reduction. These mechanistic studies further demonstrate that phototrophs can
directly impact the substrate of Hg available to methylators via Hg redox cycling. How such inter-
actions play out in the environment remains elusive, however.
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Phototrophic mercury oxidation
At present, there is a lack of studies addressing Hg0 oxidation in phototrophs. This could be related to
the challenges associated with working with volatile Hg0 as a substrate. We speculate that anoxygenic
phototrophic bacteria could potentially oxidize Hg0 through thiol-related mechanisms similar to
those outlined in chemotrophic anaerobes based on the fact that Hg is known to bind to thiols in
the photosynthetic reaction center of PNSB (Asztalos et al. 2012; Sipka et al. 2017). Currently, the
presence of such pathways has yet to be investigated and Hg0 oxidation in phototrophs has yet to
be demonstrated.

Mercury toxicity to phototrophs
Phototrophs appear to mitigate Hg toxicity either via intracellular sequestration or elimination from
the cell (e.g., via efflux or evasion). Sequestration strategies come in the form of dedicated chelating
molecules such as phytochelatins and metallothioneins (Rauser 1990; Kawakami et al. 2006) and the
production of HgS (Kelly et al. 2007), all of which prevent Hg from binding to sensitive target sites
inside the cell.

Inside the cell, Hg can interact with a number of proteins that are essential for supporting photo-
synthetic metabolism. Hg’s toxicity is attributable to Hg’s affinity for thiol bonds (Rooney 2007)
and its ability to substitute for cations that serve as cofactors in enzymatic reactions essential to cap-
turing light energy (Matson et al. 1972; Singh et al. 2012; Zhang et al. 2013). By disrupting protein
function, Hg can inhibit electron transport and the ability of cells to generate ATP thereby inhibiting
cell growth (Murthy and Mohanty 1993; Kukarskikh et al. 2003; Antal et al. 2009). Although toxico-
logical studies continue to emerge evaluating the ranges of Hg concentrations tolerated by different
model phototrophs (Chen et al. 2014; Zhu et al. 2015; Nowicka et al. 2016; Mu et al. 2017), very few
offer new mechanistic insights (Grégoire and Poulain 2014).

The recent transcriptomic work with C. reinhardtii has provided insights into the genetic response of
green algae to Hg toxicity (Beauvais-Fluck et al. 2016; Beauvais-Fluck et al. 2017). Hg exposure led to
the disruption of genes involved in motility, cell division, energy metabolism, amino acid production,
lipid oxidation, metal transport, and antioxidant enzyme synthesis (Beauvais-Fluck et al. 2017).
Although the apparent negative effects on gene regulation did not always manifest as a physiological
response (Beauvais-Fluck et al. 2016; Beauvais-Fluck et al. 2017), the authors saw increased photosyn-
thetic efficiency when small levels of MeHg were present (Beauvais-Fluck et al. 2016). These results
suggested a possible hormetic effect derived from MeHg exposure that merits further investigation.
Based on our own observations in PNSB, there is precedence for sublethal exposure to Hg providing
a physiological advantage during phototrophic growth by acting as an electron sink (Grégoire and
Poulain 2016). Whether such a pathway is supported in oxygenic phototrophs has yet to be tested
and the importance of beneficial or hormetic responses to Hg in the environment remains to be
evaluated.

At the time of publishing our 2014 review paper, very little mechanistic information was available on
Hg toxicity in anoxygenic phototrophs. This has changed in recent years. Work with PNSB showed
that large amounts of HgII can bind to the photosynthetic reaction center (PS-RC) (Asztalos et al.
2012) and that the vast majority of Hg supplied to PNSB was bound to weak binding sites, rather than
to high affinity thiol-bearing sites (Sipka et al. 2017). Although the exact chemical natures of the weak
binding sites were not further discussed, one can speculate that these binding sites may have been
carboxyl groups that have a lower affinity for Hg (Gu et al. 2011; Mishra et al. 2011; Jiang et al.
2015) and are known to be present in the PS-RC (Knox et al. 2018). Sipka et al. 2017 also demon-
strated that Hg toxicity was attributable to a small number of strong thiol-bearing Hg binding sites
that disrupted cyclical phosphorylation by inhibiting inter-quinone electron transfer and proton
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translocation. Despite the sensitivity of electron transport machinery to Hg, model PNSB strains
could tolerate μM levels of Hg before damage to photosynthetic membranes became apparent
(Kis et al. 2015).

These new findings illustrate that Hg targets may be similar between oxygenic anoxygenic photo-
trophs, which is unsurprising given the evolutionary parallels between some components of their pho-
tosynthetic machinery. Although the availability of genomic information frame PNSB as excellent
models to study Hg toxicity in anoxygenic phototrophs, the response of other clades to Hg has yet to
be characterized. For instance, we know very little about Hg interactions with green (non)-sulphur bac-
teria, aerobic anoxygenic photosynthetic bacteria, Heliobacteria, or purple sulphur bacteria. This infor-
mation would be useful in revealing the evolutionary and physiological context shaping the response to
Hg toxicity among phylogenetically distinct clades of phototrophs. Indeed, the absence of dedicated Hg
resistance strategies such as the mer operon among anaerobes and phototrophs is puzzling. There
appears to be a tight coupling between the presence of oxygen and the evolution of the mer operon
(Barkay et al. 2010). Anaerobic and anoxygenic phototrophic metabolisms predate the rise of oxygen
on Earth and cometabolic processes such as sequestration or the use of excess reducing power to cata-
lyze Hg reduction may have been sufficient to cope with Hg toxicity in the absence of oxygen.

Concluding remarks
Over the last four years, we have observed a shift in the field of research addressing microbial Hg
transformations. Investigations into chemotrophic Hg methylation still dominate the literature thanks
largely to the discovery of the hgcAB gene cluster. With powerful molecular tools in hand, one impor-
tant frontier in our field is to identify the native function of this gene cluster and the possible role(s)
associated with Hg methylation. In addition to gaining fundamental insights into the process, such
mechanistic insights may reveal strategies that could help manage Hg pollution.

Important mechanistic details of anaerobic and phototrophic Hg cycling have also emerged, leading
us to reconsider the environmental contributions of anaerobic Hg redox cycling pathways. One such
contribution is summarized in Fig. 1, highlighting a possible role of phototrophs in catalyzing Hg
reduction at redox interfaces within a stratified lake ecosystem.

Once deposited into aquatic ecosystems, aqueous Hg speciation is altered such that ageing of Hg com-
plexes occurs, typically leading to low Hg bioavailability over time (Fig. 1A-(1)). Redox processes
catalyzing the transformation of Hg complexes control the delivery of bioavailable Hg to anoxic
zones. This occurs by resetting Hg speciation, i.e., remobilizing Hg initially present as poorly bioavail-
able complexes (e.g., Hg-DOM or Hg-particles) to more mobile and bioavailable species (e.g., Hg0,
Fig. 1A-(2) and 1B). This can occur by anaerobic or photobiological redox processes targeting Hg
and described in this review, or via heterotrophic or photochemical degradation of the organic ligands
to which Hg is bound. Given the increasing importance of anaerobes in Hg0 oxidation and anoxy-
genic phototrophs in HgII reduction, these groups can provide a fresh supply of bioavailable Hg to
sites conducive to Hg methylation (Fig. 1A-(3) and 1B).

This conceptual redox wheel (Chiasson-Gould et al. 2014) is meant to highlight the potential for
highly dynamic yet cryptic Hg redox cycling (Fig. 1B). We use the word cryptic here to highlight
the fact that no net Hg0 accumulation may be observed but its production and rapid oxidation may
represent an essential step in controlling Hg mobility at, and across, redox interfaces. Furthermore,
this conceptual framework illustrates how phototrophs (or other anaerobes) can participate in Hg
transformation well beyond their role as MeHg accumulators at the base of food webs. Note that such
processes can occur in any stratified environment, whether it is within the metalimnion of lakes,
microbial mats, or periphytic communities (Fig. 1).
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Fig. 1. Conceptual summary for the possible role of phototrophic and anaerobic microbes in controlling Hg bioavailability. Numbers refer to descriptions made
in the Concluding Remarks section of the text. The pink disks highlight sites where Hg speciation can be reset via redox processes that directly affect Hg (see text)
or the ligands to which Hg is bound (e.g., via heterotrophy or DOM photo-transformation). These processes can occur in oxic or anoxic conditions and be cata-
lyzed by light, microbes, or both. At the ecosystem scale (panel A), anoxygenic phototrophs are represented in green and purple, Hg methylators are represented
in brown, dissolved organic matter has been abbreviated as DOM, labile organic matter available to microbes is abbreviated as LOM, and particulate matter is
denoted by small grey circles. Hg-DOM represents poorly bioavailable Hg complexes formed with organic matter ligands of a large size. Hg-LOM represents
highly bioavailable Hg complexes formed with labile organic matter ligands; these labile organic matter ligands can act as shuttles for Hg inside the cell.
Lightning bolts represent light energy (hν) required for photobiological or photochemical processes. Inverted blue and yellow triangles represent oxygen and
light energy gradients, respectively. HS− (sulfide), CH4 (methane), and FeII/III (iron oxides) are meant to represent some of the anaerobic metabolisms known
to be involved in Hg metabolism: sulphatoreduction, methanogenesis, and ferroreduction, respectively. Panel B was adapted from Chiasson-Gould et al. 2014
and represents the redox wheel in the context of the diversity of Hg species available for microbial transformations.
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Although lab studies have afforded the controlled conditions necessary to elucidate new mechanisms
for phototrophic Hg transformations, these pathways continue to be understudied in the environ-
ment. This knowledge gap will become increasingly important to address in the face of predicted envi-
ronmental change. Increases in temperature, prolonged ice-free seasons and more intense water
column stratification will have a dramatic impact on phototroph dynamics that, in turn, exert impor-
tant controls on environmental chemistry and metal speciation. Indeed, there stand to be far-reaching
impacts on global Hg cycling stemming from changes in phototrophic communities that occupy
broad niches in oxic and anoxic habitats.
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Kis M, Sipka G, and Maróti P. 2017. Stoichiometry and kinetics of mercury uptake by photosynthetic
bacteria. Photosynthesis Research, 132: 197–209. PMID: 28260133 DOI: 10.1007/s11120-017-
0357-z
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