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Abstract
Carbonatites are unusual alkaline rocks with diverse compositions. Although previous work has char-
acterized the effects these rocks have on soils and plants, little is known about their impacts on local
ecosystems. Using a deposit within the Great Lakes–St. Lawrence forest in northern Ontario,
Canada, we investigated the effect of a carbonatite on soil chemistry and on the structure of plant
and soil microbial communities. This was done using a vegetation survey conducted above and
around the deposit, with corresponding soil samples collected for determining soil nutrient composi-
tion and for assessing microbial community structure using 16S/ITS Illumina Mi-Seq sequencing. In
some soils above the deposit a soil chemical signature of the carbonatite was found, with the most
important effect being an increase in soil pH compared with the non-deposit soils. Both plants and
microorganisms responded to the altered soil chemistry: the plant communities present in
carbonatite-impacted soils were dominated by ruderal species, and although differences in microbial
communities across the surveyed areas were not obvious, the abundances of specific bacteria and
fungi were reduced in response to the carbonatite. Overall, the deposit seems to have created micro-
environments of relatively basic soil in an otherwise acidic forest soil. This study demonstrates for
the first time how carbonatites can alter ecosystems in situ.

Key words: carbonatites, ecosystems, microorganism communities, plant communities, soil
chemistry, Spanish River Carbonatite

Introduction
Carbonatites are a diverse and unusual group of igneous rocks defined by Woolley and Kempe (1989)
as containing ≥50% carbonate minerals by volume. There are at least 527 identified carbonatite
deposits worldwide, and information on the mineralogy of 477 of these sites is available (Woolley
and Kjarsgaard 2008a). The majority (93%) of described deposits have been dated to 2.5–4.0 billion
years old (Jones et al. 2013), and these are found in Africa (36%), Asia (34%), and North America/
Greenland (23%). Economically, carbonatites are usually considered exclusively as a source of rare
earth elements (REE) and trace elements, though several deposits of economic value also contain agri-
culturally relevant minerals such as calcite (CaCO3) or dolomite (CaMg(CO3)2) (Woolley and
Kjarsgaard 2008b; Myrvang et al. 2016). Carbonatite rocks frequently contain various amounts
of the Ca-phosphate mineral apatite and the K-bearing phyllosilicates biotite and phlogopite and
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so carbonatites have been considered as an alternative source of these nutrients for plants
(Heinrich 1980). Additionally, carbonatites are a source of high-grade phosphate minerals, especially
in Brazil and South Africa, and are thus important sources of this element for agriculture
(Mariano 1989). More recently, carbonatite rock mined from a deposit in northern Ontario,
Canada, has been the focus of preliminary studies exploring its effectiveness as a natural mineral fer-
tilizer (Jones 2016). However, further work is needed to understand what the costs and benefits might
be of using minimally processed carbonatite rocks and minerals in agricultural settings.

The impact of these rocks on soil geochemistry has been the focus of several previous studies. Because
carbonatite deposits are rich in REE and phosphorus, prospectors have used geochemical fingerprint-
ing in soils and stream sediments to locate buried carbonatite deposits (e.g., Kunzendorf and Secher
1987; Ahn et al. 2014). Vestin et al. (2006) explored the Alnö carbonatite deposit in Sweden with
the aim of determining the influence of the alkaline deposit on the chemistry of the overlying soils
(0–30 cm depths) and found that there was a distinct geochemical signature characterizing the
deposit’s influence throughout the surveyed soil horizons. This was followed up by a later study
(Vestin et al. 2013) where it was concluded that the Norway spruce (Picea abies (L.) H.Karst.) growing
in the alkaline soils above the deposit had a higher growth rate and increased tissue Ca content than
those trees in less alkaline soils not affected by the deposit. A similar study was done by Myrvang
et al. (2016) who investigated nutrient content of the vegetation overlying the Stjernøy carbonatite
deposit in Norway. Although the plant content of several elements (Ca, Mg, P, and K) indicated that
the vegetation above the deposit was obtaining adequate if not higher levels of nutrients, the eco-
logical significance of this finding was not explored. Hanslinger et al. (2007) reported that that
the Alnö carbonatite deposit in Sweden is better delineated by the unique vegetation assemblages
supported by the alkaline soils above the deposit than by the existing geological map. This relates
to the primary aim of geobotanical prospecting, whereby underlying geological formations are iden-
tified based on the overlying vegetation (Brooks 1972). Though difficulties in this technique arise
from the expertise required (e.g., to identify the plants) and the sometimes broad habitat prefer-
ences of potential indicator species (Moon 2006), it can be used with some success in situations
where stark geological boundaries exist. For instance, differences in the types and growth of vegeta-
tion above silicate bedrock and carbonatite bedrock were identified in a Finnish study (Talvitie
1979). Although these diverse studies provide evidence that plant growth is improved or altered
with carbonatite presence, it is largely unclear how vegetation communities and soil microorgan-
isms may respond to the presence of these rocks. Weathering of minerals from carbonatite deposits
increases nutrient content and pH of the overlying soil and it is expected that because of these abi-
otic changes carbonatite deposits will also influence the biota within the soil and ultimately the
larger ecosystems based around those soils. Indeed, in a recent study by Colin et al. (2017), it was
demonstrated that when calcite and apatite were introduced to tree stands there were compositional
shifts in the soil bulk bacterial community. These minerals are abundant in many carbonatites
(Woolley and Kjarsgaard 2008a). Yet, to our knowledge, no study has investigated how the presence
of carbonatite rocks affects the overlying soil microbiota.

Here, we examined the Spanish River Carbonatite (SRC) deposit near Sudbury, Ontario, Canada, in
its capacity to affect the surrounding ecosystem. More specifically, we investigated whether the SRC
causes distinct changes in the biotic and abiotic factors of the ecosystem overlying the deposit by
establishing comparisons within and outside the deposit. First, we identified whether the glacial till
soils above the deposit were distinct from those present in the area outside the deposit (i.e., whether
the soils overlying the deposit had a chemical signature indicative of SRC influence). Second, we
assessed whether plant community composition could be explained by differences in soil chemistry
in and around the deposit. Finally, we determined the composition of the soil microbial communities,
and whether changes based on SRC presence/absence were obvious.
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Materials and methods

Geological history and deposit description
The SRC deposit is located south of the Spanish River Provincial Park (UTM: 17T 0444556 5163894).
The area is part of the Great Lakes–St. Lawrence forest region and contains a mixed forest primarily
composed of jack pine (Pinus banksiana Lamb), red pine (Pinus resinosa Aiton), and trembling aspen
(Populus tremuloides Michx.). This carbonatite deposit was formed by intrusive igneous activity into
quartz monzonite bedrock 1.83 billion years ago (Sage 1987), and the most recent glaciation period
in the area was ~13 000 years ago (Dyke et al. 2002). The glacial activity left till of varying depths
across the area that somewhat isolates the SRC deposit from the surface. The overburden depth ranges
from 0 m at the quarry to at least ~56 m near the outer core according to borehole exploration by
Agricultural Mineral Prospectors Inc. (2004). The SRC deposit has an approximate surface area of
3.25 km2, with distinct mineralogical zones (Fig. 1; Sage 1987) referred to here as the inner core
(IC), outer core (OC), and transition zone (TZ). Based on a geological survey done by Agricultural
Mineral Prospectors Inc. (2004), the IC carbonatite is composed primarily of calcitic carbonatite with
apatite, abundant to minor amounts of vermiculite, and minor amounts of iron oxide and magnetite.
The OC carbonatite consists of calcitic carbonatite interbanded with fenite with abundant to moder-
ate amounts of vermiculite and some iron oxide and apatite. The TZ is predominantly fenite consist-
ing of altered granodiorite with minor amounts of iron oxide and calcitic carbonatite. For this study,
two additional zones were designated and used as positive and negative controls, respectively: the
quarry (Q) zone within the OC where the SRC deposit is exposed, and the area outside the deposit
(OU). Each zone was sampled twice in different areas for a total of 10 sites (Fig. 1).

Vegetation and soil sampling
A modified-Whittaker plot (Stohlgren et al. 1995) was used to assess the species abundance and
percent cover of vegetation at each site, including trees. Specific logging/reforestation data were
unavailable for the area, and so disturbance was estimated for each site. With the exception of one site
dominated by jack pine in the IC that was likely reforested some time ago, the areas surveyed for
this project appeared to be either undisturbed or old growth forest. The disturbed site was compared
with the other IC site to determine whether the reforestation had altered the vegetation in the area
prior to including it in the data set. Sampling was undertaken in mid-August of 2015. Species were
identified in the field according to descriptions by Dickinson et al. (2004) and Newcomb (1989).
Unknown species were collected and later identified using the Northern Ontario Plant Database
(northernontarioflora.ca/), with pressed samples were deposited at the Algoma University herbarium.

Whole root systems were collected from individuals of the three most abundant herbaceous plant spe-
cies in each plot for assessment of colonization by arbuscular–mycorrhizal fungi. Roots of plants
known to be mycorrhizal (following the list by Wang and Qiu 2006) were stained using Trypan blue
(Brundrett et al. 1996), and colonization quantified using the gridline intersect method of McGonigle
et al. (1990). Soil samples were collected from the centre of each of the modified-Whittaker 10 m2

subplots (two subplots per site). An open-faced auger was used to collect soil until reaching the C
horizon or a maximum depth of 80 cm. Aside from the exposed material at the quarry, bedrock
material was not encountered. Soil cores were placed sequentially on a sterilized whiteboard and each
soil horizon was identified by differences in colour and texture. Where soil horizons could not be vis-
ually identified in situ, they were classified according to their placement in the soil profile (e.g., the
first non-organic horizon was considered to be horizon A). At the quarry, both exposed bedrock
and a residual soil (at least 40 cm deep) were present. The soil had formed directly on the weathered
bedrock and consisted of small rock fragments generally <3 mm in size that responded strongly to
HCl. This soil was supporting sporadic small plants at the time of sampling, and desiccation cracks
were present in low-lying sections. In the soil profile of the sampled areas in the quarry, the
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uppermost horizon consisted of SRC (distinguished as weathered by lighter visual appearance) and
small amounts (≤0.6%) of organic matter, whereas the lower horizon consisted of unweathered (or
less-weathered/darker-coloured) SRC and trace (0.2%) organic matter. For comparisons in modelling,
these were labelled as the A and B horizons, respectively. At each site and when possible, two samples
were collected from each horizon in sterile 50 mL Falcon™ tubes: one was taken using axenic tech-
niques and stored at 4 °C for analysis of soil microbial community composition (determined by
Metagenom Bio Inc., Toronto, Ontario, Canada), and the other was collected for soil chemical analy-
ses (conducted by Actlabs Agriculture Division, Ancaster, Ontario, Canada). The soil chemical
parameters determined were pH, organic matter (OM) content, nutrient content (P, K, Ca, Mg, Na,
S, Zn, Mn, B, Cu, Fe, Al, and total N), and cation exchange capacity (CEC). The concentrations of
these elements were determined by inductively coupled plasma optical emission spectroscopy

Fig. 1. Overview of the Spanish River Carbonatite (SRC) deposit located near the Spanish River in Ontario,
Canada. Five zones were considered for the study and are delineated by the black lines: the quarry (grey circle)
where SRC is actively mined (Q), the inner core (IC), the outer core (OC), the transition zone (TZ), and the out-
side of the deposit (OU). Sampling sites are indicated by the white dots. Zones estimated from data provided by
Agricultural Mineral Prospectors Inc. (2004). Map data provided by Google (2018) and satellite data provided
by DigitalGlobe and CNES/Airbus (2018).
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following Mehlich-3 extraction. The CEC was calculated from the elemental concentration values,
and the total N/OM determined by combustion analysis. Finally, the texture, percent coarse frag-
ments, fizzing response to 10% HCl, and colour of the soils were noted in situ. A total of 78 soil sam-
ples were collected for microbial community composition and a total of 75 for soil chemical analyses.

Microbial community DNA isolation and 16S/ITS sequencing
DNA was isolated from each soil sample using a Norgen Soil DNA Isolation Kit following the suppli-
er’s recommendation. For bacteria, the V3–V4 region of the 16S rRNA was selectively amplified using
the 340F/806R primers (Takahashi et al. 2014), whereas for fungi the Internal Transcribed Spacer 1
(ITS1) region was amplified using the BITS1/B58S3 primers (Bokulich and Mills 2013). The PCR
cycle used for amplification was as follows, with each sample run in triplicate and pooled following
amplification: initial denaturing at 95 °C for 5 min, followed by 30 cycles of 95 °C for 30 s, 45 °C
for 30 s, 68 °C for 50 s and final extension at 68 °C for 10 min. Amplicon size and amount were con-
firmed by visualizing 2 μL on a 2% TAE agarose gel. Once the amount of 16S/ITS1 rRNA was con-
firmed, pooled rRNA was gel purified and quantified using Qubit dsDNA HS Assay Kit following
the manufacturer’s instructions. Library DNA was prepared according to the MiSeq System
Denature and Dilute Libraries Guide (Illumina Document #15039740 v01). A 6 pM library with 5%
PhiX was sequenced with MiSeq Reagent Kit (v2), and the MiSeq data were streamed to BaseSpace.
Although 78 samples were processed, only 71 samples for 16S and 70 samples for ITS were of suffi-
cient quality for successful sequence generation. The mean depth was 25 689 reads for 16S samples
and 28 808 reads for ITS samples. Sequences (with primers removed) were assembled with pandaseq
(version 2.11; Masella et al. 2012) with a quality threshold of 0.7. Chimera detection/removal and
clustering of sequences at 97% identity were accomplished with UPARSE (version 9; Edgar 2013) with
singleton sequences removed. The 16S representative sequences were classified using the RDP
Classifier (Wang et al. 2007) trained against the Greengenes database (version 13_8) with a 0.8 classi-
fication threshold (RDP Classifier bootstrap), whereas the ITS representative sequences were classi-
fied against the UNITEdb (version 7.1) using UCLUST (Edgar 2010). The operational taxonomic
unit (OTU) representative sequence set was aligned using either the PyNAST algorithm (Caporaso
et al. 2010) against the Greengenes (16S) or MUSCLE (version 3.8.31; Edgar 2004; (ITS)) and a repre-
sentative phylogeny was constructed using FastTree 2.1.3 SSE3 (Price et al. 2010) with the GTR
model. Sequence data were deposited in the NCBI database (submission number SUB3462412).

Statistical analysis and bioinformatics
Our first question was whether the chemistry of soils within the deposit was distinct from that of the
soils outside of the deposit, and possessed a chemical signature indicative of SRC influence. Because a
large number of soil chemical variables had near-linear or linear distributions, a principal component
analysis (PCA) was used to identify differences in chemistries across the sampled areas. For the PCA,
the soil horizons were not considered (individual horizon data is available in Table S1). This test was
followed by analyses of variance (ANOVAs) to validate whether soil chemical factors could be used to
group samples according to presumed SRC influence. Post hoc Tukey’s HSD tests were conducted to
confirm differences in soil chemical properties across groups. Our next question was whether
differences in plant community composition could be explained by observed differences in soil chem-
istry. To answer this question, constrained ordination with redundancy analysis (RDA) was under-
taken with the presence/absence data of plant species from the 1 m2 modified-Whittaker subplots
(excluding mature trees). Data from the Q sites were not included in this analysis because the area
is actively mined and therefore highly disturbed. Because soil chemical analyses were not conducted
for the 1 m2 subplots, the mean values from the 10 m2 subplots were used. Analysis was done using
the R “vegan” package (version 2.4-1; Oksanen et al. 2016), specifically the “rda” function for RDA
and the “anova.cca” function (1500 permutations) for the random permutation test. Additionally,
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the Shannon diversity indices were calculated (Fowler et al. 1998) for each sub-plot in the modified-
Whittaker plot.

Our last question was whether differences in soil chemistry affected bacterial (16S) and fungal (ITS)
communities, which was addressed using two methods: non-metric multi-dimensional scaling
(NMDS) coupled with a permutational multivariate analysis of variance (PERMANOVA) to quantify
changes in community composition, and differential abundance analysis to identify indicator OTUs.
Bacterial and fungal community composition was determined with core samples pooled (i.e., without
considering horizons). Prior to the analysis, OTUs with low read numbers (<5) were removed and
abundances converted to relative proportions. Differential abundance was evaluated using the
DeSeq2 R package (version 1.12.4; Love et al. 2014), with the geometric means correction for data
containing zeros. The PERMANOVA analysis was undertaken using the vegan R package) and the
“adonis” function with a Bray–Curtis distance matrix. When possible, the differentially abundant
OTUs were further classified by an NCBI nucleotide BLAST search for highly similar sequences
against the NCBI nucleotide collection (≥99% similarity) excluding uncultured and environmental
sequences. All data analyses were conducted in the R software environment (version 3.3.1; R Core
Team 2016).

Results

Soil chemistry differed with overburden depth and only weakly
across zones
It was expected that the different mineralogy of bedrock in the zones within the SRC deposit would give
rise to unique soil chemical parameters in each of these areas. Although the sampling sites partially
grouped by zone in the PCA (Fig. 2), some areas within the deposit (e.g., IC) had nearly indistinguish-
able soil chemistries from those areas outside the deposit. Overall, soils from the IC, TZ, and OU zones
grouped together, the Q soils were the most different, and the OC soils grouped between those two sets.

According to the ordination vectors and the loadings for the main axis of sample separation (Fig. 2;
PC1), the primary differences among soil samples, in order of contribution to PC1 and irrespective
of sign, were seen in CEC, Ca, Al, Mg, S, Mn, pH, and P. Using the differences in these parameters,
a SRC influence signature was established and used to reclassify the sampling areas into three new
groupings: areas of high SRC influence (Q), areas of moderate SRC influence (OC), and areas of
low/negligible SRC influence (IC, TZ, OU). These groups were validated by comparing the soil found
outside of the deposit (low/negligible influence) to the “pure” SRC at the quarry (high influence) using
a one-way ANOVA as above (Fig. 3). Areas of high SRC influence were characterized by increased
levels of Ca, Mn, and higher CEC and pH (Figs. 3a–3d, respectively) when compared to low/
negligible influence sites. The moderate influence sites were most similar to the high influence sites
with regards to those elements, but usually did not reach the same levels. When assessed across hori-
zons, soil pH was typically within 0.2 units of any other horizon within influence categories (Table 1).
There was, however, a stark difference in soil pH between the high, moderate, and low/negligible SRC
sites, with them being basic (~pH 7.60), moderately acidic (~pH 5.85), and acidic (~pH 4.85), respec-
tively (Table 1). The areas of low SRC influence were characterized by increased
Al and S content compared to those placed in the moderate and high categories (Figs. 3e and 3f,
respectively). Finally, the soil Mg (Fig. 3g) and P (Fig. 3h) contents were not indicative of influence
category. The soils across sites could not be differentiated based on their physical characteristics; they
had a similar texture, HCl response, and colour, with the exception of the soil at the Q sites. Following
the above results, the SRC influence categories were used for the later analyses where applicable
(e.g., PERMANOVA). The soil chemistry of the IC site that was thought to have been disturbed by
reforestation was not different from that of the other IC site sampled.
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Plant community composition varied with soil chemical properties
Separation of plant communities in the RDA was driven by increases in pH, Ca, Mg, CEC, and Mn
(Fig. 4a). Constraining the ordination by soil chemical factors explained 26.0% of the variation in
community composition, and all the tested soil factors were shown to equally contribute to commu-
nity variation as shown by the permutation test output (Fig. 4b). In sites of moderate SRC influence
(i.e., within the OC), the abundant plant species (i.e., defined as ≥3 individuals across the two tested
sites within a zone) consisted of Acer spicatum Lamarck, Solidago altissima Linnaeus, Thuja occi-
dentalis Linnaeus, Acer rubrum Linnaeus, Rubus idaeus ssp. strigosus (Michaux) Focke, and
Comptonia peregrina (Linnaeus) Coulter. In sites of low/negligible SRC influence (i.e., the IC, TZ,
and OU), the plant species that were abundant (i.e., found in at least two of the zones) and unique
to these areas consisted of Maianthemum canadense Desfontaines, Vaccinium angustifolium
Bentham, Pleurozium schreberi (Bridel-Brideri) Mitten, Pteridium aquilinum (Linnaeus) Kuhn,
and Lysimachia borealis (Rafinesque-Schmaltz) Manns & Anderberg. Although several abundant
species were present in both the moderate and low/negligible SRC influence sites, the only abundant
species present across all areas was Cornus canadensis Linnaeus, which had approximately 10 indi-
viduals in each of the IC, TZ, and OU, but only three individuals in the OC sites. The Shannon-
diversity indices for the 1 m2 subplots suggested an increase in plant diversity/abundance as SRC in-
fluence decreased (Fig. 4c). As the most abundant species in each zone were typically different,

Fig. 2. Principal component analysis of soil chemistry factors coloured by zone. The table to the right contains
the loadings of each soil factor to the first two components. IC, inner core; TZ, transition zone; OU, outside of
the deposit; Q, quarry; OC, outer core; CF, coarse fragments (%); OM, organic matter content (%); CEC,
cation-exchange capacity (meq/100 g); TN, total nitrogen (%).
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Fig. 3. Mean soil chemistry values across zones and high, moderate, and low/negligible Spanish River Carbonatite (SRC)-influence categories. Deposit zones
were assigned to influence categories based on similarities in their soil chemistry values (confirmed by statistical analysis) and are indicated by the above brack-
ets. The Ca, Mn, S, Mg, and P values were log-transformed before statistical analysis. Chemistry values that differ significantly between SRC-influence categories
(one-way ANOVA, 95% confidence level) are indicated with different lower case letters. CEC, cation-exchange capacity.
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meaningful comparisons of mycorrhizal colonization could not be conducted (Table S2). Analysis
of the growth of mature trees also could not be completed because the dominant tree species in each
area were typically different (Table S3); it was further complicated by possible reforestation. The
vegetation community of the disturbed site did not appear different from that of the other IC site
during ordination.

SRC impacted specific microorganisms but not overall communities
When all horizons were pooled, the bacterial communities showed weak grouping by SRC influence
category (Fig. 5a). The PERMANOVA indicated a significant influence of SRC (p-value = 0.021) on
bacterial community composition, although the variation explained by this model was very low
(R2 = 0.0766). Between the high and moderate SRC influence sites, no bacterial OTUs were found to
be significantly different in abundance, and between the moderate and low categories, only one
OTU was significantly more abundant in the sites of moderate influence. This OTU was identified

Table 1. Mean (± standard error) soil pH for each of the major soil horizons (A, B, C) separated by low/negligible,
moderate, and high Spanish River Carbonatite (SRC)-influence.

Soil horizon Low Moderate High

A 4.80± 0.06 5.80± 0.27 7.60± 0.07

B 4.85± 0.04 5.85± 0.12 7.63± 0.12

C 4.89± 0.04 5.88± 0.33 7.40± 0.10

Note: n = 2–11 samples per SRC-influence category per horizon.

Fig. 4. (a) RDA biplot with samples shaded by Spanish River Carbonatite (SRC)-influence categories. Species
presence/absence from the 1 m2 modified-Whittaker subplots were used as the vegetation data, and the averaged
soil chemistry variables from the 10 m2 subplots used as the environmental chemistry data. The percent variation
explained by the soil factor constraints is 26.0%. (b) Results of the soil chemistry permutation test to determine
significant contributions to plant community structure. For the permutation test, 1500 permutations were used
with “set.seed(2)”. (c) Average Shannon diversity indices from the 1 m2 subplots with the standard error and
number of samples for each SRC influence category. CEC, cation-exchange capacity (meq/100 g).
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to the Micrococcaceae family (Phylum Actinobacteria). The BLAST search was able to further narrow
down the identity of this OTU, with 100% identity match to several species within both the
Arthrobacter and Pseudoarthrobacter genera (e-value = 0.0). Between the low and high SRC influence
sites, there were a total of 28 bacterial OTUs that were of differential abundance (Table 2). Only two
of these OTUs, the aforementioned Micrococcaceae and a Gaiellaceae family member (Phylum
Actinobacteria), were more abundant in sites of high SRC. The rest were of higher abundance in the

Fig. 5. Non-metric multidimensional scaling (NMDS) biplots of 16S bacterial (a) and ITS fungal (b) community
data for all horizons pooled together. Samples are colour-coded by Spanish River Carbonatite (SRC) influence
level. IC, inner core; OC, outer core; OU, outside of the deposit; Q, quarry; TZ, transition zone.
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low/negligible SRC influence sites. For the Gaiellaceae, the BLAST search narrowed the identity down
to Gaiella occulta strain F2-233 (95% identity, e-value = 0.0, accession: NR118138.1).

For the fungi, it was unclear whether there was any grouping based on SRC influence level (Fig. 5b).
Though the PERMANOVA indicated that SRC was a significant driver of community differences
(p = 0.032), the variation explained by the model was quite low (R2 = 0.04983). Several fungal OTUs
were found to be differentially abundant between the SRC influence categories: a Tylospora species
(Phylum Basidiomycota), a Thelephoraceae species (Phylum Basidiomycota), a Leotiomycetes

Table 2. Bacterial OTUs of differential abundance between high and low/negligible Spanish River Carbonatite (SRC) sites.

Phylum Class Order Family Genus Abundance with SRC

Actinobacteria Thermophilia Gaiellales Gaiellaceae NA Increased

Actinobacteria Actinobacteria Actinobacteriales Micrococcaceae NA Increased

AD3 ABS-6 NA NA NA Decreased

Acidobacteria DA052 Ellin6513 NA NA Decreased

Acidobacteria DA052 Ellin6513 NA NA Decreased

Acidobacteria DA052 Ellin6513 NA NA Decreased

Acidobacteria DA052 Ellin6513 NA NA Decreased

Acidobacteria DA052 Ellin6513 NA NA Decreased

Acidobacteria DA052 Ellin6513 NA NA Decreased

Acidobacteria DA052 Ellin6513 NA NA Decreased

Acidobacteria Acidobacteriia Acidobacteriales Acidobacteriaceae NA Decreased

Acidobacteria Acidobacteriia Acidobacteriales Acidobacteriaceae NA Decreased

Acidobacteria Acidobacteriia Acidobacteriales Koribacteraceae NA Decreased

Acidobacteria Acidobacteriia Acidobacteriales Koribacteraceae NA Decreased

Acidobacteria Acidobacteriia Acidobacteriales Koribacteraceae NA Decreased

Acidobacteria Acidobacteriia Acidobacteriales Koribacteraceae NA Decreased

Acidobacteria Acidobacteriia Acidobacteriales Koribacteraceae NA Decreased

Acidobacteria Acidobacteriia Acidobacteriales Koribacteraceae NA Decreased

Acidobacteria Acidobacteriia Acidobacteriales Koribacteraceae NA Decreased

Actinobacteria Actinobacteria Actinomycetales NA NA Decreased

Proteobacteria Alphaproteobacteria Rhizobiales Bradyrhizobium Bradyrhizobium sp. Decreased

Proteobacteria Betaproteobacteria Burkholderiales Burkholderiaceae Burkholderia bryophila Decreased

Proteobacteria Alphaproteobacteria Rhodospirillales Rhodospirillaceae NA Decreased

Proteobacteria Alphaproteobacteria Rhodospirillales Rhodospirillaceae NA Decreased

Proteobacteria Gammaproteobacteria Xanthomonadales Sinobacteraceae NA Decreased

Proteobacteria Gammaproteobacteria Xanthomonadales Sinobacteraceae NA Decreased

Proteobacteria Gammaproteobacteria Xanthomonadales Sinobacteraceae NA Decreased

Proteobacteria Gammaproteobacteria Xanthomonodales Sinobacteriaceae NA Decreased

Note: NA, not applicable.
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member (Phylum Ascomycota), and two OTUs that could not be assigned to a class rank. A BLAST
search was able to identify one of the unassigned OTUs to several Ascomycota sp. (100% identity,
e-value 2e-87). For the other OTUs, the BLAST search narrowed the identity of the Tylospora sp. to
Tylospora asterophora (99% identity, e-value = 1e91, accession: JQ711985.1), the Thelephoraceae
member to a Tomentella sp. (97% identity, e-value = 2e90, accession: MH248057.1), and the
Leotiomycetes member to the Helotiaceae family (100% identity, e-value = 2e80 for several
Meliniomyces and Helotiaceae species). One unassigned OTU could not be identified with any cer-
tainty and was disregarded. Generally, fungal OTUs were less abundant in areas of moderate/high
SRC influence than in those of low influence. Tylospora asterophora, Tomentella sp., and the member
of the Helotiaceae were more abundant in the low influence sites than in moderate sites; counts of
these OTUs and an Ascomycota sp. were also higher in the low influence sites than in the high influ-
ence sites. Between the moderate and the high influence sites, the Ascomycota sp. was more abundant
in the former, whereas the Tomentella sp. was more abundant in the latter.

Discussion
This is the first comprehensive study investigating how the soil properties associated with a natural
carbonatite deposit influence the plant and soil microbial communities in a Great Lakes–St.
Lawrence forest ecosystem. As with most of this part of North America, the deposit is covered by a
layer of overburden from past glaciation; however, despite this it was found that some areas above
the deposit had an identifiable soil chemical signature indicative of SRC. The variable soil chemistry
resulted in differences in plant community structure. This was demonstrated in areas of moderate
SRC influence that had different plant species than those areas of low/negligible influence. However,
the influence of SRC did not appear to be a dominant factor in shaping soil microbial communities.
Nevertheless, several bacterial and fungal OTUs were found to be differentially abundant between
areas of high and low/negligible SRC influence.

SRC, soils, and the influence of the deposit on the overlying
ecosystem
Several factors indicated an influence of the SRC deposit on soil chemistry, as revealed by a compari-
son between zones. Because CEC, Ca, Al, S, Mn, and pH values of the OC soils (moderate influence)
were often more similar to those of the exposed SRC comprising the Q samples (high influence) than
to those of other zones (low/negligible influence), the increases in these parameters were considered
to be a signature of SRC. The primary mineral of SRC is calcite, and like many other carbonatite
deposits it is accompanied by a variety of nutrient-bearing accessory minerals such as biotite and apa-
tite (Sage 1987). Despite there being an overburden layer of variable depth (0 m at the quarry to at
least 56 m elsewhere) covering the deposit, it appears that these minerals are affecting some of the
sampled soils. Kunzendorf and Secher (1987) made a similar suggestion for the Qaqarssuk carbonatite
deposit in Greenland, which is covered by soils formed from alluvial deposits that are enriched in Nb
and P originating from the underlying carbonatite. Thus, it can be inferred that in some areas the
depth of the overburden is shallow enough that weathered SRC exerts an effect on the soils. This
needs to be validated as there is not a reliable overburden map for the whole deposit. It is assumed
that weathering of SRC fragments and their incorporation into the soils is responsible for the SRC sig-
nature identified in the OC sites surveyed here. This assumption is justified based on the similar soil
chemistry between OC and Q sites, and by previous works demonstrating carbonatite influence on
soil chemistries (e.g., Kunzendorf and Secher 1987; Vestin et al. 2006; Ahn et al. 2014). However, this
study has not verified the presence of carbonatite minerals in the soil outside of the quarry (Q).
Although the soil chemistry of the OC sites was similar to that of the Q, many values were signifi-
cantly lower in the OC and it is likely that the overburden present in the OC dilutes the SRC influence.
Additionally, topography, hydrology, and vegetation presumably play important roles in the transfer
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of carbonatite elements into the glacial till soil. For instance, where the deposit is near the surface at
higher elevations, a signature of SRC might be found both in soils at these locations and in nearby
topographical lows where downward water movement through the soils would have transported some
minerals or elements. Nutrient translocation by the action of plants could also have occurred and a
mechanism for this is provided by the nutrient-uplifting hypothesis of Jobbágy and Jackson (2004),
which posits that trees (and other vegetation) are active in transporting lithosphere-derived nutrients
to the surface of soils. This translocation occurs when lithosphere nutrients are incorporated into
above- and below-ground plant biomass, and subsequently released when the plant organic matter
decomposes close to the soil surface.

The soil chemistry differences above the deposit indicate that in some areas SRC has had a strong
influence on the soils. Above-ground differences in plant community composition are therefore likely
linked to changes in soil chemistry. Several plant species unique to the moderate influence sites
(i.e., the OC) are typically those colonizing areas post-disturbance or that are tolerant to alkaline soil
pH. For instance, C. peregrina has been considered a weed, and post-fire disturbance conditions are
favourable for its growth (Hall et al. 1976). As none of the outer core sites displayed signs of recent
disturbance (e.g., being dominated by younger trees or displaying signs of fire damage on older
wood), it is likely that the abundance of ruderal species in the OC is not due to a disturbance event
but to the presence of SRC. With the stark differences in soil pH between areas of moderate and of
low/negligible SRC influence, it appears that one of the main effects of the deposit has been the crea-
tion of ecological microhabitats (“islands”) of more basic soil pH in what would otherwise be a large
surrounding area (“sea”) of more acidic soils. The more basic the soils, the greater likelihood they will
be colonized by species tolerant of soil pH changes, i.e., ruderal species. Based on the Shannon diver-
sity indices, where areas of moderate influence were seen to have lower indices than those areas with-
out SRC influence, we hypothesize that the altered soil chemistry caused by SRC constrains the
abundance and diversity of the plant species present in these areas. The data collected regarding tree
species show the same trend whereby in moderate influence sites there were fewer tree species and
fewer individuals than in low/negligible sites (Table S3). This might be due to the soil chemistry
restricting the types and number of plant species and (or) the spatial separation from areas where
more alkaline-adapted species are present and could serve as seed sources. These species could also
be less tolerant of the higher, potentially toxic Al concentrations found in the more acidic soil condi-
tions. A similar situation whereby the bedrock and soil chemistry controlled the distribution of plant
species was found in a broad survey of rock habitat vegetation performed by Tyler (1996). To verify
this hypothesis, the soil pH across the deposit area could be assessed, and the areas of higher pH
(and thus presumably under carbonatite influence) identified and surveyed for vegetation community
composition. Such a study would also assist in determining the magnitude of overburden depth and
hydrology/topography in expressing the effects of the carbonatite on the deposit area soils.

Although it was expected that the soil microbial communities would be significantly shaped by
differences in pH or by the abundance of elements provided by the weathering of SRC’s nutrient-
bearing minerals, the data did not support this hypothesis. For instance, many species of bacteria that
have been associated with the weathering of carbonatite minerals (e.g., Burkholderia (Uroz et al. 2011)
or Pseudomonas (Colin et al. 2017)) were not more abundant in the moderate- or high-influence sites
than in the low/negligible sites. The only bacterial OTU consistently in higher abundance in SRC-
affected areas was tentatively identified as a member of the genus Arthrobacter belonging to the family
Micrococcaceae. Members of this genus have been shown to utilize a diverse set of carbon/nitrogen
sources (Hagedorn and Holt 1975). Furthermore, their ability to metabolize aliphatic amino acids
and aromatic hydrocarbons (Hagedorn and Holt 1975), as well as their nitrification activity, were
found to be higher at more neutral than acidic pHs (Brierly and Wood 2001). The ability to utilize a
variety of nutritional substrates and to nitrify under the more basic soil conditions in SRC-affected
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areas would be beneficial to this microbial group as SRC does not contain appreciable amounts of
N, and these characteristics could explain the higher presence of Arthrobacter in areas with the SRC
signature. This would be especially important in the Q, where the soils almost exclusively consist of
SRC particles. In terms of the fungal OTUs, most were found to decrease in abundance with increas-
ing SRC influence. This is in agreement with the observations made by Rousk et al. (2010) that fungi
prefer acidic soils whereas bacteria prefer neutral/alkaline soils.

The most abundant bacterial families detected in our soil samples were either saprotrophic and (or)
associated with the rhizosphere of plants (Table S4). Similarly, aside from the Pseudeurotiaceae, most
fungal families were saprotrophic and (or) ectomycorrhizal (Table S4). The identity of tree species dom-
inant in a given area can be a strong determinant of fungal community composition (Urbanová et al.
2015). As such, differences in leaf litter composition and (or) mycorrhizal hosts may provide an explan-
ation for the differences seen in fungal abundances between low/negligible and the high or moderate
SRC influence soils. Additionally, increasing the pH to values similar to those observed in the moder-
ately-influenced sites has previously been reported to negatively affect the survival of ectomycorrhizae
on P. abies roots (Lehto 1994). This suggests that the increased soil pH resulting from the presence of
SRC may not be conducive to ectomycorrhizal colonization of the tree species at the deposit. Given
our focus in this study on the assessment of the colonization of herbaceous plants by arbuscular mycor-
rhizal fungi, the colonization of trees by ectomycorrhizal fungi needs to be investigated in future studies.

Conclusion
The results reported here are the first that show that a carbonatite deposit can contribute to shaping
the overlying ecosystem. We detected a SRC signature in some soils, which had an effect on both
the plant and soil microbial communities. Furthermore, using Illumina Mi-Seq, we were able to inves-
tigate both community-level and individual OTU-level responses of microbes to SRC in the deposit.
Overall, it appears that when the overburden is shallow enough to allow for the carbonatite deposit
to influence the soil chemistry, pockets of more basic soils have developed in an area of otherwise pre-
dominantly acidic soils. In turn, this has constrained the abundance and diversity of plant species in
these areas and affected the abundance of several microorganisms. However, most groups of bacteria
and fungi in communities were unaffected by the SRC. Based on these findings, in areas where carbo-
natite deposits are found close to the surface, it can be expected that ecological effects may emerge,
which may or may not lead to unique ecosystem-level features. As such we recommend that ecosys-
tems in and around these deposits should be studied using similar approaches to those reported here
to better understand these sites and, if needed, develop appropriate strategies for environmental pro-
tection should these areas be targeted for mining. Finally, although the soil properties, plants, and soil
microorganisms were emphasized here, impacts on other relevant organisms (e.g., insects or other
fauna) should be included in future work.
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