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Abstract
Estrogen receptor-α knockout (ERKO) in female rodents results in bone loss associated with
increased osteocyte sclerostin expression; whether this also occurs in males is unknown. Here, we
examined the effects of ERKO on femoral cortical geometry, trabecular microarchitecture, and osteo-
cyte sclerostin expression of the femur and lumbar vertebrae. At 14 months of age, male ERKO and
wild-type (WT) littermates (n = 6 per group) were sacrificed, and femora and vertebra were collected.
Cortical geometry and trabecular microarchitecture were assessed via micro-computed tomography;
osteocyte sclerostin expression was assessed via immunohistochemistry. ANCOVA with body weight
was used to compare ERKO and WT for cortical geometry; t-tests were used for all other outcomes.
Regardless of skeletal site, ERKO mice had greater trabecular bone volume and trabecular number
and decreased trabecular separation compared with WT. In the femoral diaphysis, ERKO had lower
total area, cortical area, and cortical thickness compared with WT. The percentage of sclerostin+
osteocytes was increased in ERKO animals in cortical bone but not in cancellous bone of the femur
or the lumbar vertebrae. In conclusion, ERKO improved trabecular microarchitecture in aged male
mice, but negatively altered femoral cortical geometry associated with a trend towards increased
cortical sclerostin expression.
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Introduction
Epidemiological evidence supports a strong positive relationship between bioavailable estrogen and
bone mass in both women and men (Khosla et al. 2001; Piot et al. 2019). Estrogen actions are medi-
ated in part by estrogen binding to the estrogen receptor (ER), which is found in two isoforms, ERα
and ERβ. Both ERα and ERβ are found in bone; however, ERα is more prevalent in cortical bone,
whereas ERβ is more widely distributed in cancellous bone (Onoe et al. 1997). ERα and ERβ knockout
mouse models have been used to determine the significance of this differential expression in the
growth and maintenance of bone mass. Male ERα knockout (ERKO) mice generally show increased
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cancellous bone but decreased cortical bone mass, whereas male ERβ knockout mice show equivalent
bone mass when compared with wild-type (WT) mice (Vico and Vanacker 2010). However, total
bone mass is only one determinant of bone strength (Ammann and Rizzoli 2003; Fonseca et al.
2014), and reduction in estrogen signaling can affect all levels of bone’s hierarchal structure (Khosla
et al. 2012; Khalid and Krum 2016), which collectively determine fracture resistance.

Male ERKO mice have decreased absolute longitudinal bone growth (Vidal et al. 2000; Vandenput
et al. 2001; Parikka et al. 2005) relative to their WT counterparts. Young male ERKO mice have
decreased cortical bone area, cortical thickness (Vidal et al. 2000; Callewaert et al. 2009), and biome-
chanical bending strength (Vidal et al. 2000), but increased cancellous bone mineral density (BMD)
and trabecular number compared with WT mice (Lindberg et al. 2001; Callewaert et al. 2009). Aged
male ERKO mice have a similar phenotype, with decreased cortical bone area (Vandenput et al.
2001; Parikka et al. 2005) compared with WT. Although cancellous BMD is greater in male ERKO
mice, trabecular microarchitecture has not been examined in an aged male ERKO mouse model.
Considering the significant role that trabecular microarchitecture plays in biomechanical bone
strength (Oftadeh et al. 2015), analysis of the trabecular microarchitecture of aged male ERKO
animals is important.

Ultimately, the three-dimensional structure of bone is controlled via activity of osteoblasts,
osteoclasts, and osteocytes. Osteocytes express sclerostin, a protein that down-regulates bone
formation by inhibition of Wnt signaling (Delgado-Calle et al. 2017) through paracrine actions on
local osteoblasts and osteoclasts (Robling et al. 2008; Moustafa et al. 2012). Sclerostin expression is
regulated by several external factors such as age and mechanical loading as well as endogenous
hormones such as IGF-I, parathyroid hormone, androgens, and estrogens (Delgado-Calle et al.
2017). In women and female rodent models, estrogen status is inversely related to sclerostin
expression, whether measured via serum sclerostin concentrations (Mirza et al. 2010; Mödder et al.
2011a; Kim et al. 2015a) or sclerostin mRNA or protein expression in the bone (Kim et al. 2012;
Fujita et al. 2014; Jia et al. 2014). In men, circulating sclerostin is negatively correlated with testoster-
one concentrations (Di Nisio et al. 2015), though correlation does not prove direct regulation. In fact,
estrogen treatment of elderly men decreased circulating sclerostin, whereas testosterone treatment
did not (Mödder et al. 2011b). This implies that estrogen directly regulates circulating sclerostin in
men, though the direct impact on bony sclerostin and whether this regulatory role requires ERα is still
unknown. Thus, further studies looking at the effect of estrogen on bone sclerostin expression in
males are warranted.

In addition to direct ERα-mediated effects, estrogen affects bone indirectly by impacting metabolic
health. Reduction in ERα activity is associated with increased body weight (Callewaert et al. 2009),
as well as metabolic dysfunction, including insulin resistance (Faulds et al. 2012) and type 2 diabetes
(Bryzgalova et al. 2006), all of which are associated with decreased bone quality (Starup-Linde and
Vestergaard 2016) and an increased risk of fracture (Janghorbani et al. 2007; Merlotti et al. 2010;
Compston 2013). However, the relative contributions of these indirect metabolic effects to the overall
skeletal phenotype of male ERKO mice has yet to be evaluated.

In this study, we compare aged male ERKO mice with their age-matched WT counterparts.
We hypothesized that aged male ERKO mice would have improved trabecular microarchitecture
in both the femur and the lumbar vertebrae, as well as decreased femoral length, mineral content,
and cortical bone area compared with WT mice. Additionally, we hypothesized that, versus
WT, male ERKO mice would have a higher percentage of sclerostin-positive (Sost+) osteocytes in
cortical bone.
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Methods

Experimental design
This study is part of a larger study investigating the effects of ERKO on glycemic control, inflamma-
tion, and hepatic steatosis in aged, male mice (Winn et al. 2018). Heterozygote ERα−/+ mice on a
C57BL/6J background were bred at our facility to produce male homozygote (ERα−/−) and littermate
WT mice, as previously described (Lubahn et al. 1993; Eddy et al. 1996). Briefly, development of the
ERα−/− mouse was accomplished by homologous recombination and insertion of a neomycin
sequence containing premature stop codons and polyadenylation sequences into a Not1site in exon
2 of the mouse estrogen receptor gene, resulting in an interruption of gene transcription, but not full
removal of the gene (Lubahn et al. 1993; Eddy et al. 1996; Rubanyi et al. 1997). Knockout was verified
via western blot (Winn et al. 2018). After weaning, mice were fed standard rodent chow ((3.3 kcal/g of
food), 13% kcal fat, 57% kcal carbohydrate, and 30% kcal protein, 5001, LabDiet, St. Louis, Missouri,
USA) ad libitum until 14 months of age, providing two experimental groups: ERKO and WT controls
(n = 6–7/group). All mice were pair-housed (mixed genotypes) in a temperature-controlled environ-
ment at 25 °C, with a 0700–1900 light, 1900–0700 dark cycle. Body weight and food intake were
measured weekly, and body composition was measured by a nuclear magnetic resonance imaging
whole-body composition analyzer (EchoMRI 4in1/1100; Echo Medical Systems, Houston, Texas,
USA) on conscious mice one week prior to sacrifice. At 14 months of age, mice were euthanized
following a 5-h fast. Blood samples were collected via cardiac puncture and centrifuged; plasma was
separated, frozen in liquid nitrogen, and stored at −80 °C for further analysis. Circulating estradiol
and fasting insulin, glucose, and lipids were measured as previously described (Winn et al. 2018).
Femurs, tibiae, forelimbs, and lumbar vertebrae were harvested, wrapped in PBS-soaked gauze, frozen
in liquid nitrogen, and stored at −80 °C for further analysis. All procedures were approved in advance
by the University of Missouri Institutional Animal Care and Use Committee.

Cortical geometry and trabecular microarchitecture
Micro-computed tomographic (μCT) imaging of the right femur and the fourth lumbar vertebrae was
performed using a high-resolution imaging system (Xradia 520 Versa, ZEISS, Oberkochen,
Germany). The methods used were in accordance with guidelines for the use of μCT in rodents put
forth by the American Society of Bone and Mineral Research (Bouxsein et al. 2010). Scans were
acquired using an isotropic voxel size of 0.012 mm, a peak X-ray tube potential of 50 kV, and a 4-s
exposure time. Trabecular bone microarchitecture was evaluated in a 0.5-mm region of interest
directly above the growth plate of the distal femur, representing the distal metaphysis, and in a
0.5-mm region of interest of the lumbar vertebral body above the intervertebral disc. Cortical bone
cross-sectional geometry was evaluated at a 1-mm region of interest beginning at the end of the third
trochanter, representing the diaphysis. The optimize threshold function was used to delineate miner-
alized bone from soft tissue. Scans were analyzed using BoneJ software (Doube et al. 2010) (National
Institutes of Health public domain), and measures of cortical geometry and trabecular microarchitec-
ture were collected. Outcomes for cortical geometry included: femur length (Le), total cross-sectional
area inside the periosteal envelope (Tt.Ar), marrow area (Ma.Ar), cortical bone area (Ct.Ar), cortical
area fraction (Ct.Ar/Tt.Ar), mean cortical thickness (Ct.Th), and robustness (R, total bone area over
length calculated as R = Tt.Ar/Le). Outcomes for trabecular microarchitecture included: total volume
(TV, volume of region of interest), bone volume (BV, volume of region segmented as bone), bone
volume fraction (BV/TV), connectivity density (Conn.D, degree of trabeculae connectivity
normalized to TV), mean trabecular thickness (Tb.Th), trabecular separation (Tb.Sp, distance
between trabeculae), trabecular number (Tb.N, average number of trabeculae per unit length calcu-
lated as 1/(Tb.Th + Tb.Sp) (Bruker-microCT 2012)), structural model index (SMI), and degree of
anisotropy (DA).
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Cortical collagen and advanced glycated end-product (AGE) content
Left femur diaphyses were flushed of marrow, acid-hydrolyzed with 6 N HCl, dried overnight, and
reconstituted in 0.001 N HCl. The hydrolysate was used to measure collagen and AGE content.
Collagen content was estimated by determination of hydroxyproline via colorimetric assay using
Chloramine T and Erlich’s reagents (Sigma–Aldrich, St. Louis, Missouri, USA) compared with a
hydroxyproline standard (Sigma–Aldrich, St. Louis, Missouri, USA). Total AGEs were quantified by
fluorescence with excitation at 360 nm and an emission of 460 nm using quinine as a standard
(Thermo Fisher Scientific, Waltham, Massachusetts, USA) (Tang et al. 2007).

Ash and mineral content
Right forelimbs (humerii, ulnae, and radii) were cleaned of all soft tissue, weighed, and defatted in
hexane and diethyl ether each for 24 h. Following lipid extraction, forelimbs were dried to a constant
weight at 60 °C. Forelimbs were then placed in a muffle furnace (800 °C) overnight to collect ash.
Final weight of ash content was recorded, and the ashed forelimbs were analyzed for calcium and
phosphorus content via inductive coupled plasma-optical emission spectroscopy (Agricultural
Chem Station, University of Missouri, Columbia, Missouri, USA). Results are expressed as gram of
calcium or phosphorus per 100 g of ash (g/100 g).

Osteocyte sclerostin expression
Right femurs and lumbar vertebrae were fixed in 10% formalin for 48 h at 4 °C and then decalcified in
14% ethylenediaminetetraacetic acid (EDTA) at 4 °C. Decalcified femurs were embedded in paraffin
wax blocks, and 5-μm sections were taken longitudinally down the midline of the femur. Lumbar ver-
tebrae were embedded in paraffin wax and 5-μm sections were taken transversely through the verte-
bral body. The sections were dried and deparaffinized, and then underwent enzymatic antigen
retrieval using a 1× solution (20 μg/mL) of protease K (Fisher Scientific, Hampton, New
Hampshire, USA) in Tris-EDTA buffer (Fisher Scientific, Hampton, New Hampshire, USA), followed
by blocking of endogenous peroxidase activity (3% H2O2, Ricca Chemical, Arlington, Texas, USA)
and avidin and biotin expression (Avidin Biotin Blocking Solution, Thermo Scientific, Waltham,
Massachusetts, USA). Sections were then incubated in anti-sclerostin primary antibodies (Abcam,
Cambridge, UK) overnight at 4 °C. Secondary antibody binding and detection were accomplished
using the Vectastain Elite ABC kit (Vector Laboratories, Burlingame, California, USA), with diamino-
benzidine (ImmPACT DAB, Vector Laboratories, Burlingame, California, USA) as the chromogen.
Sections were counterstained with hematoxylin (Fisher Scientific, Hampton, New Hampshire,
USA), dried, and mounted. Sections were analyzed at 20× for sclerostin expression. Sost+ osteocytes
were defined as osteocytes exhibiting brown staining, and sclerostin negative (Sost−) osteocytes were
defined as osteocytes exhibiting blue (hematoxylin) staining. Data are reported as percent Sost+
osteocytes. In addition to Sost+ and Sost− osteocytes, empty osteocytic lacunae revealed by hema-
toxylin staining were counted, and data are reported as percent empty lacunae, as previously
described by Pereira et al. (2017). For cortical bone, percent Sost+ osteocytes were counted in a
1 mm region directly below the third trochanter, and for trabecular bone, percent Sost+ osteocytes
were counted in the region directly above the growth plate, to correlate with the μCT data.

Statistical analysis
Student’s t-tests were used to test for significant differences between groups (ERKO vs. WT) for met-
abolic outcomes, material properties, trabecular microarchitecture, and percentage of Sost+ osteo-
cytes. Body weight is a strong predictor of cortical bone mass, so cortical geometry was assessed by
one-way ANCOVA with final body weight included as a covariate. Pearson correlations between met-
abolic outcomes (body weight, body fat percentage, and serum insulin and glucose) and circulating
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estradiol concentrations from the parent study (Winn et al. 2018) and bone outcomes
(trabecular microarchitecture, cortical geometry, sclerostin expression) were performed to determine
direct effects of genotype versus indirect effects of metabolic health on bone outcomes. Data are pre-
sented as means ± SEM or adjusted means ± SEM. Statistical significance was set at p < 0.05. All
analyses were performed using SPSS software (SPSS/25.0, SPSS, Chicago, Illinois, USA).

Results

Metabolic characteristics
The metabolic characteristics for these animals have been previously published as part of a larger
study (Winn et al. 2018) and the results have been summarized in Table 1. Briefly, ERKO mice had
higher body fat percentage (p = 0.026), fasting glucose (p = 0.024) and triglycerides (p = 0.013) com-
pared with WT mice. No differences were detected between groups in body weight, absolute food
intake, circulating estradiol, or fasting levels of insulin, total cholesterol, high-density lipoprotein,
low-density lipoprotein, or nonesterified fatty acids.

Femoral cortical geometry
Femur length was not different between WT and ERKO animals (WT: 15.80 ± 0.17 mm and ERKO:
15.73 ± 0.17 mm; p = 0.788), though there was a trend toward an increase in robustness in the
WT group over the ERKO animals (WT: 0.143 ± 0.003 mm and ERKO: 0.134 ± 0.003 mm;
p = 0.075). ERKO mice showed significantly lower Tt.Ar (ERKO: 2.096 ± 0.052 mm2 and WT:
2.277 ± 0.052 mm2; p = 0.042), Ct.Ar (ERKO: 0.865 ± 0.023 mm2 and WT: 0.961 ± 0.023 mm2;
p = 0.018), and Ct.Th (ERKO: 0.198± 0.004 mm and WT: 0.212 ± 0.004 mm; p = 0.047) compared
with WT animals. There were no differences between groups in Ma.Ar (WT: 1.315 ± 0.042 mm2

and ERKO: 1.232 ± 0.042 mm2; p = 0.205) or Ct.Ar/Tt.Ar (WT: 0.418 ± 0.009 and ERKO:
0.411 ± 0.009; p = 0.629). No differences were seen in the Imax/Imin ratio, a measure of the circularity
of the diaphysis (Shaw and Stock 2009), between groups (WT: 2.287 ± 0.113 and ERKO:
2.364 ± 0.113; p = 0.655) (Fig. 1).

Table 1. Metabolic characteristics of male ERα−/− mice (ERKO) and wild-type (WT) mice.

Outcome WT ERKO p

Body mass (g) 33.6± 1.0 39.0± 3.1 0.148

Body fat percentage 16.81± 0.46 24.80± 2.83 0.034*

Average food intake (g/d) 5.10± 0.48 4.10± 0.25 0.188

Blood glucose (mg/dL) 227± 20 321± 29 0.024*

Insulin (uU/L) 36.4± 9.6 36.8± 8.8 0.974

Cholesterol (mg/dL) 62± 4 79± 8 0.099

High-density Lipoprotein (mg/dL) 32± 3 38± 2 0.103

Low-density Lipoprotein (mg/dL) 5± 0.6 6± 1 0.591

Triglycerides (mg/dL) 122± 6 147± 6 0.013*

Nonesterified Fatty Acids (mmol/L) 0.49± 0.11 0.52± 0.05 0.763

Circulating estradiol (pg/mL) 7.1± 2.0 8.5 ± 1.3 0.567

Note: Data are means ± SEM, n = 6 per group. Significance between groups (p< 0.05) is indicated by
asterisk (*). Adapted from Winn et al. (2018).
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Fig. 1. Cortical geometry of the femur in male ERα−/− mice (ERKO) compared with wild-type (WT)
counterparts. (A) Total area, (B) cortical area, (C) marrow area, (D) cortical-to-total area ratio, (E) cortical thick-
ness, (F) Imax/Imin, and (G) robustness. Data are adjusted mean± SEM, n = 6 per group. Significance between
groups (p< 0.05) is indicated by asterisk (*). Note: Tt.Ar, total cross-sectional area inside the periosteal envelope;
Ct.Ar, cortical bone area; Ma. Ar, marrow area; Ct.Ar/Tt.Ar, cortical area fraction; Ct.Th, mean cortical thickness.
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Femoral trabecular microarchitecture
ERKOmice had significantly higher BV/TV (ERKO: 0.149 ± 0.011 and WT: 0.090 ± 0.011; p = 0.002),
Tb.N (ERKO: 3.192 ± 0.128 mm−1 and WT: 2.360 ± 0.128 mm−1; p = 0.001), and Conn.D (ERKO:
145.69± 16.76 mm−3 and WT: 59.76± 16.76 mm−3; p = 0.005), compared with WT animals. ERKO
mice had significantly lower Tb.Sp (ERKO: 0.245 ± 0.015 mm and WT: 0.354 ± 0.015 mm;
p = 0.001) and DA (ERKO: 0.263 ± 0.029 and WT: 0.373 ± 0.027; p = 0.021) compared with WT
animals. Tb.Th (ERKO: 0.073± 0.001 mm and WT: 0.072± 0.001 mm; p = 0.875) and SMI (ERKO:
8.927 ± 1.120 and WT: 8.548± 1.120; p = 0.816) were not different between groups (Fig. 2).

Vertebral trabecular microarchitecture
ERKO mice had significantly higher BV/TV (ERKO: 0.334± 0.013 and WT: 0.245± 0.013; p = 0.001),
Tb.N. (ERKO: 5.616 ± 0.137 mm−1 and WT: 3.891± 0.137 mm−1; p = 0.001), and Conn.D (ERKO:
435.42± 24.28 mm−3 and KO: 133.36± 24.28 mm−3; p = 0.001) compared with WT mice. ERKO mice
had significantly lower Tb.Th (ERKO: 0.055 ± 0.001 mm and WT: 0.061 ± 0.001 mm; p = 0.008),
Tb.Sp. (ERKO: 0.124 ± 0.005 mm and WT: 0.197 ± 0.005; p = 0.001), and DA (ERKO: 0.713 ± 0.021
and WT: 0.812 ± 0.021; p = 0.007) compared with WT mice. There was no significant difference in
SMI (ERKO: 3.946± 0.146 and WT: 3.656± 0.146; p = 0.187) between groups (Figs. 3 and 4).

Femoral cortical collagen and AGE content
No differences were seen in total femoral collagen content (mg hydroxyproline/g bone) between
groups (WT: 15.05± 1.32 and ERKO: 15.39 ± 1.34; p = 0.654). There were no differences in total fem-
oral AGE content (ng quinine/mg bone) between groups (WT: 25.53 ± 5.93 and ERKO: 26.92 ± 6.49;
p = 0.697). Relative to total collagen content, there also were no differences in AGE content
(ng quinine/mg hydroxyproline) between groups (WT: 1718.1 ± 477.6 and ERKO: 1739.0 ± 332.3;
p = 0.928) (Fig. 5).

Ash and mineral content
There were no differences in total ash weight between groups (WT: 26.42 ± 0.55 mg and ERKO
24.97 + 0.55 mg; p = 0.092). No differences in calcium content (g Ca/100 g ash) were detected between
groups (WT: 38.83± 0.45 and ERKO: 39.11 ± 0.42; p = 0.286). There were no differences in phospho-
rus content (g P/100 g ash; WT: 18.26 ± 0.14 and ERKO: 18.46 ± 0.26; p = 0.181) or the calcium to
phosphorus ratio between groups (WT: 2.12± 0.03 and ERKO: 2.12± 0.03; p = 0.834) (Fig. 6).

Osteocyte sclerostin expression
There was a trend towards an increase in percentage of Sost+ osteocytes in ERKO animals
compared with WT (WT: 59.35%± 4.69% and ERKO: 75.30%± 5.25%; p = 0.058) in the cortical bone
of the femoral diaphysis, but there were no differences in cancellous bone of the femoral meta-
physis (WT: 54.61% ± 7.93% and ERKO: 51.39% ± 9.15%; p = 0.801) or the lumbar vertebrae
(WT: 6.75%± 0.94% and ERKO: 5.75%± 1.03%; p = 0.491). No differences were detected in percent-
age of empty lacunae between WT and ERKO animals in cortical bone of the femoral diaphysis
(WT: 24.82% ± 6.32% and ERKO: 29.79% ± 7.07%; p = 0.617), or cancellous bone of the femoral
metaphysis (WT: 20.01% ± 4.35% and ERKO: 14.07% ± 5.03%; p = 0.413), or the lumbar vertebrae
(WT: 13.31%± 2.85% and ERKO: 20.55%± 3.12%; p = 0.119) (Figs. 7 and 8).

Metabolic influences on skeletal outcomes
Since ERKO can alter metabolic function, and metabolic health can have significant impact on the
skeletal phenotype, we determined whether impaired metabolic health was associated with any
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Fig. 2. Trabecular microarchitecture of the distal femur in male ERα−/−mice (ERKO) compared with wild-type
(WT) counterparts. (A) Trabecular bone volume, (B) trabecular number, (C) trabecular thickness, (D) trabecular
separation, (E) degree of anisotropy, (F) connectivity density, and (G) structural mode index. Data are
mean ± SEM, n = 6 per group. Significance between groups (p< 0.05) is indicated by asterisk (*). Note: BV/TV,
bone volume fraction; Tb.n, trabecular number; Tb.Th, mean trabecular thickness; Tb.Sp, trabecular separation;
Conn.D, connectivity density.
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Fig. 3. Trabecular microarchitecture of the lumbar vertebrae in male ERα−/−mice (ERKO) compared with wild-
type (WT) counterparts. (A) Trabecular bone volume, (B) trabecular number, (C) trabecular thickness,
(D) trabecular separation, (E) degree of anisotropy, (F) connectivity density, and (G) structural mode index.
Data are mean ± SEM, n = 6 per group. Significance between groups (p < 0.05) is indicated by asterisk (*).
Note: BV/TV, bone volume fraction; Tb.n, trabecular number; Tb.th, mean trabecular thickness; Tb.Sp, trabecular
separation; Conn.D, connectivity density.
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Fig. 4. 3-D reconstructions of regions of interest in cortical and cancellous bone in ERα−/− mice (ERKO)
compared with wild-type (WT) counterparts.
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Fig. 5. Femoral cortical collagen and advanced glycated end-products in male ERα−/− mice (ERKO) compared
with wild-type (WT) counterparts. (A) Hydroxyproline, (B) advanced glycated end-products (AGE), and
(C) AGE normalized to hydroxyproline content. Data are mean± SEM, n = 6 per group. Significance between
groups (p< 0.05) is indicated by asterisk (*).
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skeletal outcomes. There were significant positive correlations between circulating fasting glucose and
BV/TV of the femoral distal metaphysis (r = 0.666, p = 0.018), Tb.N (r = 0.670, p = 0.017), and
Conn.D (r = 0.623, p = 0.031). There were significant negative correlations between circulating fasting
glucose and Tb.Sp (r = −0.668, p = 0.018) and DA (r =−0.634, p = 0.036) of the femoral distal meta-
physis. In the lumbar vertebrae, there were significant positive correlations between fasting glucose
and BV/TV (r = 0.672, p = 0.017) and Tb.N (r = 0.594, p = 0.042), and a significant negative correla-
tion between fasting glucose and Tb.Sp. (r = −0.622, p = 0.031).

We tested trabecular outcomes with fasting glucose as a covariate to assess the influence of circulating
glucose on the group differences seen. In the femoral distal metaphysis, significant differences between
groups remained in Tb.N (without glucose: ERKO: 3.192± 0.128 mm−1 and WT: 2.360± 0.128 mm−1,
p = 0.001; with glucose: ERKO: 3.111 ± 0.143 mm−1 and WT 2.441 ± 0.143 mm−1, p = 0.015) and
Tb.Sp (without glucose: ERKO: 0.245± 0.015 mm and WT: 0.354± 0.015 mm, p = 0.001; with glucose:
ERKO: 0.254 ± 0.017 and WT: 0.345 ± 0.017, p = 0.008) when glucose was included as a covariate.
Significant group differences (KO vs. WT) changed to trending group differences in BV/TV (without
glucose: ERKO: 0.149 ± 0.011 and WT: 0.090± 0.011, p = 0.002; with glucose: ERKO: 0.142± 0.013
and WT: 0.097 ± 0.013, p = 0.056) and Conn.D (without glucose: ERKO: 145.69 ± 16.76 mm−3

and WT: 59.76 ± 16.76 mm−3, p = 0.005; with glucose: ERKO: 136.72 ± 19.21 mm−3 and WT:
68.73± 19.21 mm−3, p = 0.051). Significant group differences in DA were abolished when circulating
fasting glucose was included as a covariate (without glucose: ERKO: 0.263 ± 0.029 and WT:
0.373± 0.027, p = 0.021; with glucose: ERKO: 0.282± 0.034 and WT: 0.358± 0.030, p = 0.172). In the
lumbar vertebrae, significant group differences remained in BV/TV (without glucose:
ERKO: 0.334 ± 0.013 and WT: 0.245 ± 0.013, p = 0.001; with glucose: ERKO: 0.325 ± 0.014 and
WT: 0.253 ± 0.014, p = 0.011), Tb.N (without glucose: ERKO: 5.616 ± 0.137 mm−1 and
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Fig. 6. Forelimb ash and mineral content in male ERα−/− mice (ERKO) compared with wild-type (WT) coun-
terparts. (A) Total ash weight, (B) calcium-to-phosphorus ratio, (C) calcium, and (D) phosphorus. Data are
mean± SEM, n = 6 per group. Significance between groups (p< 0.05) is indicated by asterisk (*).
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WT: 3.891 ± 0.137 mm−1, p = 0.001; with glucose: ERKO: 5.603 ± 0.165 mm−1 and WT:
3.904 ± 0.165 mm−1, p = 0.001), and Tb.Sp (without glucose: ERKO: 0.124 ± 0.005 mm and WT:
0.197± 0.005, p = 0.001; with glucose: ERKO: 0.125± 0.006 mm and WT: 0.195± 0.006, p = 0.001).
There were no significant relationships between circulating estradiol concentrations, fasting insulin
concentrations, or percentage Sost+ osteocytes and other outcomes.
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Fig. 7. Osteocyte sclerostin expression and empty lacunae in male ERα−/− mice (ERKO) compared with wild-
type (WT) counterparts. (A) Percent Sost+ osteocytes in cortical bone, (B) percent empty lacunae in cortical bone,
(C) percent Sost+ osteocytes in cancellous bone of the femur, (D) percent empty lacunae in cancellous bone of the
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Discussion
In this study, we showed that ERKO had differential effects on cancellous and cortical bone in aged
male mice. ERKO animals showed changes in cancellous bone microarchitecture of the femoral distal
metaphysis and lumbar vertebrae, which others have shown to be associated with increased fracture
resistance (Ebbesen et al. 1999; Oxlund et al. 2001). By contrast, ERKO resulted in detrimental
changes in cortical bone geometry of the femoral diaphysis compared with WT counterparts. This
is the first study to assess sclerostin expression in a male ERKO model. ERKO did not increase sclero-
stin expression in cancellous bone of the distal femoral metaphysis or the lumbar vertebrae; however,
sclerostin expression trended towards an increase in cortical bone of the femoral diaphysis.
Furthermore, the skeletal effects of ERKO were not attributable to differences in overall metabolic
health between ERKO and WT, implying that the skeletal phenotype is primarily attributed to
the ERKO.

The morphological changes seen in the cortical bone in this study are supported by previous studies
(Vidal et al. 2000; Lindberg et al. 2001; Callewaert et al. 2009). Estrogen and the estrogen receptors
have significant, cell-specific roles in the development and maintenance of bone mass (reviewed in
Khosla et al. 2012; Khalid and Krum 2016), which directly influence bone remodeling. Estrogen
blocks osteocyte and osteoblast apoptosis, induces osteoblast differentiation, increases osteoclast
apoptosis, and reduces osteoclast differentiation through a direct suppression of receptor activator
of NFκB ligand (RANKL) expression (Syed and Khosla 2005; Khosla et al. 2012). Estrogen indirectly
reduces osteoclast differentiation through increased expression of osteoprotegerin, a decoy receptor
for RANKL (Shevde et al. 2000; Bord et al. 2003). ERα specifically is required for the maintenance
of cortical bone mass, as we can see in cell-specific ERα knockouts. When ERα was deleted from
osteoblast precursors, femoral BMD and cortical thickness were reduced compared with WT animals,
indicating that ERα controls cortical bone formation through actions on progenitor cells (Almeida
et al. 2013). This agrees with our results, since we only saw detrimental changes in cortical geometry
and not in trabecular microarchitecture of the femur or vertebrae. However, when ERα was deleted

Fig. 8. Representative photos of sclerostin staining in cortical and cancellous bone in male ERα−/−mice (ERKO)
and wild-type (WT) counterparts. Scale bar represents 100 μm. Note: Sost+, sclerostin positive; Sost-, sclerostin
negative.
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from mature osteocytes only, trabecular bone volume of the lumbar vertebrae decreased, which is in
contrast with our results (Windahl et al. 2013). This is most likely due to the difference in cell-type;
the deletion of ERα in just the osteocyte possibly produces a small enough effect on estrogen signaling
that ERβ is not required to compensate as it often does in a whole-body model, though further studies
in this area are needed.

As expected in a global knockout model, the improvements in vertebral trabecular microarchitecture
were consistent with those observed in the femur and support our original hypothesis. The improve-
ments we saw in trabecular microarchitecture of the femur are also consistent with previous studies
done in younger male ERKO mice (Lindberg et al. 2001; Callewaert et al. 2009). These improvements
can be explained by the greater presence of ERβ in cancellous bone where ERβ and ERα appear to
have similar actions and both play a role in maintaining total bone mass (Khalid and Krum 2016).
However, one characteristic in our study that did not match previous studies is the lack of differences
in femoral length. This could be in part due to the age of our animals compared with other studies, as
mice do not fully close their epiphyseal plates and slowly continue longitudinal growth after sexual
maturity (Kilborn et al. 2002; Jilka 2013).

Another possible cellular action of estrogen is the downregulation of sclerostin (Kim et al. 2015b),
which would also directly affect bone remodeling. In women, estrogen treatment decreased sclerostin
mRNA concentrations in bone biopsy samples (Fujita et al. 2014), but here we were the first to explore
how a decrease in ERα could affect sclerostin expression in a male model. We hypothesized that, sim-
ilar to previous female rodent models (Kim et al. 2012; Jia et al. 2014), the reduction in estrogen sig-
naling would increase osteocyte sclerostin expression in male ERKO mice, as measured by
immunohistochemistry. We observed increased osteocyte sclerostin expression in cortical bone in
the ERKO animals that approached statistical significance (p = 0.058), supporting the hypothesis that
ERα plays role in the control of sclerostin expression. Interestingly, we only saw this change in the
cortical bone, which directly correlated with the morphological effects also seen in the cortical bone.
Therefore, we propose that downregulation of sclerostin is an important cellular action of estrogen
in the overall control of bone remodeling and bone mass maintenance in cortical bone, and further
studies are warranted.

Bone mass declines with aging, due to an imbalance in bone formation and resorption that favors
increased bone loss (Chan and Duque 2002; Khosla 2013). In addition, serum concentrations of scle-
rostin increase with age in humans (Khosla 2013; Roforth et al. 2014; Hay et al. 2016), although serum
concentrations of sclerostin are not always reflective of sclerostin expression in the bone (Delgado-
Calle et al. 2017). For instance, bone needle biopsies of the iliac crest showed no difference in bone
levels of sclerostin mRNA between young and old women, despite an increase in circulating sclerostin
with age (Roforth et al. 2014). However, in rodent models, there is a distinct increase in sclerostin as
the animals age, whether measured by immunohistochemistry (Thompson et al. 2016) or protein and
gene expression (Ota et al. 2013). Since the present study used an aged rodent model, it is possible that
differences caused by ERα knockout were obscured by age-related increases in sclerostin (Ota et al.
2013; Thompson et al. 2016). Further studies are warranted to fully explore the importance of ERα
in osteocyte sclerostin expression throughout the lifespan.

In addition to direct ERα-mediated effects on the bone, decreased ERα expression is associated with
increased body weight (Callewaert et al. 2009) and metabolic dysfunction, including insulin resistance
(Faulds et al. 2012) and type 2 diabetes (Bryzgalova et al. 2006). These metabolic health concerns are
associated with decreased bone quality (Starup-Linde and Vestergaard 2016) and an increased risk of
fracture (Janghorbani et al. 2007; Merlotti et al. 2010; Compston 2013). In this study, ERKO mice
were metabolically unhealthy, characterized by increased body fat percentage, glucose intolerance,
liver steatosis, and increased fasting glucose and triglyceride concentrations (Winn et al. 2018).
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We observed significant correlations between fasting glucose concentrations and trabecular micro-
architecture outcomes, such as Tb.Sp, Tb.N, Tb.Th, BV/TV, DA, and Conn.D in both the femoral
metaphysis and the lumbar vertebrae. Thus, to determine if the improvements in trabecular micro-
architecture seen in the ERKO animals could be partly due to differences in glucose levels, we tested
group differences with fasting glucose as a covariate. After accounting for differences in fasting
glucose, the effect of ERKO on Tb.Sp, Tb.N, and Tb.Th remained, implying a direct effect of the loss
of ERα activity on trabecular microarchitecture in the femur and vertebrae.

It is important to note that ERKO does not exactly mimic estrogen deficiency, given that estrogen
signaling may occur via ERβ and there are ligand-independent effects of the ERα receptor
(Manolagas et al. 2013). In addition, female ERKOmice tend to have higher circulating estrogen levels
(Vico and Vanacker 2010), which could overemphasize the role of ERβ. However, in our study there
were no differences in circulating estradiol between groups, which corroborates other studies done
with male ERKO animals (Nanjappa et al. 2018; Winn et al. 2018). Another important note is that
the knockout model used in this study is not a complete gene knockout, as it is achieved by splicing
the neo cassette rather than removal of the full gene. In this and previous studies, this method has
shown to be an effective knockout model, in that the interruption of the gene reduces estrogen recep-
tor expression to levels undetectable by western blot (Lubahn et al. 1993; Iafrati et al. 1997). In addi-
tion, previous studies have shown that this knockout model has significantly reduced estrogen
receptor activity, which manifests as significant phenotypic differences that can be attributed to the
difference in the estrogen receptor gene (Lubahn et al. 1993; Eddy et al. 1996; Heine et al. 2000).

One limitation of this study was that these mice were global ERKO mice, which did not allow for the
distinction between osteocyte-, osteoblast-, or osteoclast-specific actions. Other studies have aimed to
elucidate these cell-specific actions (reviewed in Khalid and Krum (2016)), but none of them have
looked at sclerostin expression, which makes this study novel. Another limitation was the lack of bio-
mechanical strength data. While detrimental effects on cortical strength can be inferred, based on pre-
vious literature correlating a loss of cortical mass and thickness with a loss of biomechanical strength
(Ammann and Rizzoli 2003), we did not have the ability to test to biomechanical strength due to pre-
vious cracks and fractures that were revealed in the μCT analysis. Biomechanical strength can also be
effected by the material properties of the bone, such as mineral composition and heterogeneity, col-
lage composition and amount of crosslinking, and crystallinity of the material (Bala and Seeman
2015; Unal et al. 2018). While we saw no differences in mineral or collagen composition, the effects
of ERα on other material properties are worth exploring.

Conclusion
In conclusion, ERKO had differential effects on cortical and cancellous bone in aged male mice.
Specifically, ERKO significantly improved trabecular microarchitecture of both the femur and lumbar
vertebrae, but negatively altered cortical geometry of the femur, which supports a significant role for
ERα in the maintenance of cortical bone mass. We also found a trend towards an increase in the per-
centage of Sost+ osteocytes in the cortical bone of the femoral diaphysis, suggesting a possible mecha-
nism for the altered cortical geometry and thus a regulatory role for ERα in osteocyte sclerostin
expression in cortical bone. Taken together, these data warrant further studies to explore the effect
of ERKO on osteocyte sclerostin expression.
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