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Abstract
The need to better understand how plasticity and evolution affect organismal responses to environ-
mental variability is paramount in the face of global climate change. The potential for using RNA
sequencing (RNA-seq) to study complex responses by non-model organisms to the environment is
evident in a rapidly growing body of literature. This is particularly true of fishes for which research
has been motivated by their ecological importance, socioeconomic value, and increased use as model
species for medical and genetic research. Here, we review studies that have used RNA-seq to study
transcriptomic responses to continuous abiotic variables to which fishes have likely evolved a
response and that are predicted to be affected by climate change (e.g., salinity, temperature, dissolved
oxygen concentration, and pH). Field and laboratory experiments demonstrate the potential for indi-
viduals to respond plastically to short- and long-term environmental stress and reveal molecular
mechanisms underlying developmental and transgenerational plasticity, as well as adaptation to dif-
ferent environmental regimes. We discuss experimental, analytical, and conceptual issues that have
arisen from this work and suggest avenues for future study.

Key words: adaptation, climate change, genomic reaction norms, phenotypic plasticity, RNA
sequencing, transcriptomics

Introduction
There are two primary mechanisms by which animal populations might alter phenotypes in response
to environmental change. Plasticity (the ability of a genotype to produce different phenotypes,
depending on environmental conditions; Bradshaw 1965) shifts the trait phenotype along a “norm
of reaction” (sensu Woltereck 1909) defined by the genotype. Evolutionary (i.e., genetic) change
occurs when selection acts on standing genetic variation to alter allele frequencies. These mechanisms
are not mutually exclusive; for example, plasticity can facilitate adaptive evolutionary change to new
environments (Ghalambor et al. 2007, 2015), and the magnitude and direction of plastic responses
can themselves evolve in response to selection (Bradshaw 1965; Schlichting 1986; Lande 2009;
Chevin et al. 2010). The need to better understand how plasticity and evolution will affect the
responses of wildlife to environmental variability is intensifying as the magnitude and inevitability
of global climate change becomes increasingly clear (Merilä and Hendry 2014).
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As with other challenges related to climate change, technological advances will likely play a key role in
addressing its effect on global biodiversity. Transcriptomics (the study of all the genes expressed at a
particular moment; Wang et al. 2009) has been used to unravel the relationships between environ-
ment, genotype, and phenotype in natural populations for over a decade. Hybridization-based micro-
arrays have traditionally been the dominant method for characterizing genome-wide expression levels
in ecological studies (Alvarez et al. 2015). However, RNA sequencing (RNA-seq) is being increasingly
used as next-generation sequencing technologies become more accessible (refer to Box 1 for an out-
line of some of the key features and limitations of these methodologies in the context of this review).
Although still in its relative infancy, a remarkably rapidly growing body of literature has capitalized
on the advantages of RNA-seq to study how fishes (the most speciose of vertebrates) are impacted
by environmental change. This work is motivated by the ecological and socioeconomic value of wild
fish populations globally, the aquaculture industry, and their popularity as model systems for medical
and genetic research. Yet, a unique feature of RNA-seq as it applies to ecological questions about
global change is the sheer diversity of species whose investigation is unlocked through de novo tran-
scriptome assembly. An ISI Web of Science search using the keywords “fish” and “RNA-seq*” from
2008 (when the first studies using the term “RNA-seq” were published) returned
605 articles, the majority (61%) of which were published in the previous two years. Of the 420 studies
remaining after excluding those that focused on organisms other than fishes, many examined the
effects of diseases (56), parasites (7), pollutants (45), and diet (19) (see Qian et al. 2014). Although
these topics are relevant to the discussion of responses to environmental change because of inter-
actions between biotic and abiotic factors, herein, we focus solely on direct responses by fishes to
well-studied abiotic environmental variables; i.e., those to which animals have evolved a response,
but to which changes in climate are expected to alter the conditions that they naturally experience.
Although this might seem unduly restrictive, such studies proffer unique opportunities to advance
our understanding of plastic and evolutionary responses to environmental change. In addition, they
are often accompanied by specific challenges that we feel can be ameliorated by an early critical review
of this rapidly expanding field.

After including an additional six studies not detected by the keyword search, the resultant 52 studies
investigated the responses of a remarkably diverse 38 fish species to one or more of the following fac-
tors: temperature (24), salinity (20), dissolved oxygen concentration (11), and pH (7) (Table 1), all of
which are expected to be affected in the coming decades as a result of global climate warming. Water
temperatures are increasing across most of the globe, whereas pH and dissolved oxygen concentration
are declining (IPCC 2013). Salinity is increasing in some freshwater and oceanic environments where
evaporation outpaces precipitation (IPCC 2013; Settele et al. 2014) and decreasing in some tropical
and high latitudes due to increased precipitation and sea ice melt (Durack et al. 2012). We review
these studies in the context of how RNA-seq can inform our understanding of plastic and evolution-
ary responses to environmental change in fishes. We note that it is premature to draw firm conclu-
sions based on the limited body of work thus far, especially considering variation among the tissues
and time points sampled as these can drastically impact expression. However, in the interest of inspir-
ing future investigations of this nature, we draw some tentative inferences based on comparative
results across studies. We also highlight some of the experimental, analytical, and conceptual issues
that have arisen in the early days of using RNA-seq to study wild populations.

Plastic responses to environmental change
Plastic responses to global climate change have been documented in morphological, behavioural,
physiological, and life-history traits in a variety of fishes (reviewed by Crozier and Hutchings 2014).
Plasticity can be characterized by the time lag between the environmental cue and the change in
phenotype (Padilla and Adolph 1996), which can range from an immediate response to one expressed
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Box 1. Key features and limitations of microarrays, expressed sequence tags (ESTs), and RNA-sequencing.

Traditional hybridization-based (microarrays) and sequence-based (EST) transcriptomic meth-
ods suffer from some technical limitations (reviewed by Wang et al. 2009). For microarrays,
which involve hybridizing fluorescently labeled complementary DNA (cDNA) with probes
affixed to a solid surface (Schena et al. 1995), these include dependence on a priori knowledge
of genome sequence and a narrow quantification range that is constrained by (1) high
background noise generated by nonspecific hybridization (Okoniewski and Miller 2006) and
(2) fluorescent signal saturation for highly abundant transcripts. Statistical treatment of microar-
ray data has advanced to address many of its initial limitations; therefore, microarrays might still
be an appropriate and cost-effective choice for quantifying differential expression in known tran-
scripts if a microarray for the species of interest (or one closely related) is available. Although
high-throughput EST methods have largely overcome the limitations of microarrays through
direct cDNA sequencing, they use outdated, time-, cost-, and labour-intensive Sanger sequencing
technology. Furthermore, because the tag sequences are short, incomplete transcripts, many are
unable to be annotated even if a complete reference genome is available (Costa et al. 2010), and
it is not possible to distinguish between alternative splice isoforms or different alleles (Wang
et al. 2009).

Advances in high-throughput sequencing technology have revolutionized transcriptomics with
the advent of deep RNA-seq. A rapid and cost-effective method, RNA-seq can determine suites
of genes expressed in a particular environment, including their sequences with single base-pair
resolution, and their relative abundances with far greater precision than previous techniques
(Wang et al. 2009). Without the need for a reference genome, RNA-seq provides a relatively
accessible mode for studying the complex responses of nonmodel organisms to the environment.
The ability of RNA-seq to distinguish allelic and splice variants adds another layer of valuable
information for this purpose. Because it allows determination of both quantitative (i.e., differen-
tial expression levels) and qualitative (i.e., sequence) variations in gene expression, RNA-seq has
the potential to enable researchers to begin to disentangle the relative contributions of transcript
abundance, allelic variants, and alternative splicing to phenotypic change. Transcript sequences
can be used to identify single-nucleotide polymorphisms (SNPs) within coding regions either
de novo (given sufficient coverage; van Belleghem et al. 2012; Gayral et al. 2013; Lopez-Maestre
et al. 2016) or with the aid of a reference genome (Piskol et al. 2013). Although the ability of de
novo SNP discovery to exhaustively detect all SNPs is uncertain, those identified in transcripts
are arguably likely to have a direct functional impact (Lopez-Maestre et al. 2016). Variation in
these SNPs can then be inexpensively and efficiently characterized in large-scale ecological and
evolutionary studies (e.g., Romiguier et al. 2014). Furthermore, mRNA sequences can inform
us about putative downstream protein structure and function with no prior knowledge about
particular genes.

RNA-seq is not without its own technical biases (e.g., fragmentation (Sendler et al. 2011) and
PCR (Aird et al. 2011) biases during sample preparation), computational limitations (e.g., diffi-
culties of assembling and aligning short reads (Engström et al. 2013)), and logistical constraints
(e.g., high costs prohibiting adequate levels of replication (Table 1)). We address some of these
concerns as they pertain to this review in the discussion, in which we also recommend workflows
that combine multiple methods when appropriate. We anticipate that current drawbacks of
RNA-seq will be ameliorated by technological and computational advances in the near future.
Nevertheless, RNA-seq can be leveraged through considered experimental design to be a prom-
ising tool to address the question of how animal populations will respond to global climate
change.
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Table 1. Research in which RNA sequencing was used to study the effect of continuous, abiotic environmental variables on fishes.

Species Tissue

Number of
biological
replicates

Experimental
comparison

Environmental
variable/challenge Key processes involved in response Reference

Temperature only

Acanthochromis
polyacanthus

Liver 4–5 Developmental,
transgenerational

Temperature (↑) Metabolism (↑), immune response (↑↓), stress
response (↑↓), tissue development (↑),
transcriptional regulation (↑)

(Veilleux et al.
2015)

Cynoglossus
semilaevis

Gill, liver, muscle 3 Long term Temperature (↑) Protein processing (↑), cell morphogenesis (↑),
autophagy (↑), immune response (↓), hypoxic
signalling (↑)

(Guo et al. 2016)

Hypomesus
transpacificus

Whole larvae 5 Short term,
interspecific

Temperature (↑) Metabolism (↑), protein synthesis (↑), inducible
transcription factors (↑), osmoregulation

(Jeffries et al.
2016)

Ictalurus sp. Gill, liver 1 (3) Short term Temperature (↑) Oxygen transport (↑), protein folding and
degradation (↑), metabolic process (↑),
cytoskeletal organization (↑), protein synthesis
(↓)

(Liu et al. 2013)

Melanotaenia
duboulayi

Liver 6 Long term Temperature (↑) Immune response (↑), stress response (↑),
developmental process (↑), metabolism (↓)

(Smith et al. 2013)

Oncorhynchus
mykiss gairdneri

Gill 3 (3) Long term,
intraspecific

Temperature (↑) Stress response (↑), metabolism (↑), cellular
process, response to stimuli

(Narum and
Campbell 2015)

Pagothenia
borchgrevinki

Liver 3 Short term Temperature (↑) Cell cycle (↓), ribosome biogenesis (↓), protein
biosynthesis (↓)

(Bilyk and Cheng
2014)

Schizothorax
richardsonii

Liver 1 (3) Short term Temperature (↑) Response to stimulus (↑↓), metabolic process
(↑↓), protein folding and degradation (↑),
immune response (↑), lipid metabolism (↑)

(Barat et al. 2016)

Spirinchus
thaleichthys

Whole larvae 5 Short term,
interspecific

Temperature (↑) Stress response (↑), protein folding and
degradation (↑), DNA damage (↑), aerobic
metabolism (↑), osmoregulation

(Jeffries et al.
2016)

Squalius carolitertii Muscle, liver, fin 1 Short term,
interspecific

Temperature (↑) Regulation of transcription (↑), RNA metabolism
(↑), protein folding and degradation (↑),
oxidation–reduction (↑↓)

(Jesus et al. 2016)

Squalius torgalensis Muscle, liver, fin 1 Short term,
interspecific

Temperature (↑) Protein folding and degradation (↑), cell division
(↓), DNA and RNA metabolism (↓), ribosome
biogenesis (↓)

(Jesus et al. 2016)

Cyprinus carpio
haematopterus

Brain, liver, spleen,
gill, muscle

1 (3) Long term Temperature (↓) Protein localization and transport, cellular
processes, signal transduction, genetic
information processing, metabolism

(Liang et al. 2015)

Danio rerio Whole larvae 2 (50) Short term Temperature (↓) Transcription (↑), metabolism (↑↓), transport
(↑↓), phosphorylation (↑↓), cell motility (↓)

(Hung et al. 2016)
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Table 1. (continued )

Species Tissue

Number of
biological
replicates

Experimental
comparison

Environmental
variable/challenge Key processes involved in response Reference

Whole larvae 1 (50) Developmental, short
term

Temperature (↓) RNA splicing and localization (↑), ribosome
biogenesis (↑), protein catabolism (↑),
metabolism (↓), oxidation–reduction (↓)

(Long et al. 2013)

Brain, heart, liver,
intestine, muscle,
gill, spleen, kidney

1 (20) Short term Temperature (↓) Transcriptional regulation (↑), microtubule-based
processes (↑), mRNA splicing (↑), proteolysis (↑),
oxidation–reduction (↓)

(Hu et al. 2015a)

Muscle 4 Developmental, long
term

Temperature (↓) Metabolism (↑), oxidation–reduction (↑),
angiogenesis (↑), muscle contraction and
remodelling (↑↓), translation (↓)

(Scott and
Johnston 2012)

Lates calcarifer Muscle 1 (8) Long term,
intraspecific

Temperature
(↓Northern;
↑Southern)

Northern: microtubule-based process (↑),
response to stress (↑); Southern: complement
system (↓), cellular stress response (↑)

(Newton et al.
2013)

Neogobius
melanostomus

Liver 3 Short term,
interspecific

Temperature (↑↓) Temperature (↑): cell cycle (↓), DNA replication
(↓); temperature (↓): carboxylic acid metabolism
(↑), amino acid transport (↑), protein catabolism
(↑)

(Wellband and
Heath 2017)

Proterorhinus
semilunaris

Liver 3 Short term,
interspecific

Temperature (↑↓) Temperature (↑): immune response (↑);
temperature (↓): detection of stimulus (↑), cell
signalling (↑), regulation of gene expression (↑),
immune response (↑)

(Wellband and
Heath 2017)

Salinity only

Gymnocypris
przewalskii

Gill, kidney 6 Intraspecific Salinity Response to stimulus, immune response, ion
transport, cellular water absorption,
neuroendocrine system

(Zhang et al. 2015)

Oryzias melastigma Brain, liver, gonad 1 (10) Interspecific Salinity Ion transport, signalling, cell adhesion,
metabolism

(Lai et al. 2015b)

Anguilla japonica Corpuscle of
Stannius gland

2 Long term Salinity (↑) Calcium metabolism (↑↓), blood pressure
regulation (↑↓), ion transport (↑↓), cell adhesion
(↑), morphogenesis (↑)

(Gu et al. 2015)

Gill 2 Long term Salinity (↑) Intracellular signalling cascade (↑), phosphate
metabolic process (↑), regulation of cell
proliferation (↑), cell adhesion (↑)

(Lai et al. 2015a)

Esophagus 1 Long term Salinity (↑) Ion transport, cellular permeability (Takei et al. 2017)

Gasterosteus
aculeatus

Kidney 3 Long term,
intraspecific

Salinity (↑) Ion transport, cellular water absorption (Wang et al. 2014)

Gill 10 Short term Salinity (↑) ATP production (↑), signalling (↑),
osmoregulation (↑), cellular permeability (↑)

(Kusakabe et al.
2017)
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Table 1. (continued )

Species Tissue

Number of
biological
replicates

Experimental
comparison

Environmental
variable/challenge Key processes involved in response Reference

Brain 88–108 Short term Salinity (↑) Hyperosmotic response, immune response (Ishikawa et al.
2017)

Lateolabrax
maculatus

Liver 3 Long term Salinity (↑) Metabolites and ion transporters (↑), energy
metabolism (↑), signal transduction (↑↓),
immune response (↑↓), structure reorganization
(↑)

(Zhang et al. 2017)

L. calcarifer Intestine 1 (3) Short term Salinity (↑) Immune response (↑↓), signal transduction (↑↓),
metabolism (↓), ribosome biosynthesis (↓)

(Xia et al. 2013)

Oreochromis
mossambicus

Gill 1 (4) Long term Salinity (↑) Ion transport (↑), cell cycle (↑), metabolism (↑),
signalling (↑↓), cellular remodelling (↓)

(Lam et al. 2014)

Oreochromis
niloticus

Hepatopancreas 1 (8) Long term Salinity (↑) Amino acid, sterol, and protein metabolism (↑),
immune response (↑↓), lipid metabolism (↓),
signal transduction (↑)

(Xu et al. 2015)

Oryzias latipes Intestine 5 Short term Salinity (↑) Protein phosphorylation, transcription regulation
(↑), cell adhesion, signal transduction

(Wong et al. 2014)

Pangasianodon
hypophthalmus

Gill, kidney,
intestine

1 (3) Long term Salinity (↑) Apoptosis (↑), energy metabolism (↑), ion
transport (↑↓), cellular reorganization (↑), signal
transduction (↑↓)

(Nguyen et al.
2016)

Salvelinus alpinus Gill 6 Long term Salinity (↑) Ion transport (↑↓), immune response (↑↓), cell
cycle (↑), stress response (↑), developmental
process (↓)

(Norman et al.
2014a)

Gill 6 Long term,
intraspecific

Salinity (↑) Immune response (↑↓), regulation of protein
transport (↑)

(Norman et al.
2014b)

Alosa
pseudoharengus

Gill 3 Long term,
intraspecific

Salinity (↑↓) Landlocked/salinity (↓): freshwater ion uptake
(↑), cellular permeability (↑); Anadromous/
salinity (↑): ion secretion (↑)

(Velotta et al.
2017)

G. aculeatus Gill 5 Long term,
intraspecific

Salinity (↑↓) Ion transport (↑↓), carbohydrate metabolism
(↑↓), lipid metabolism (↑↓), rRNA processing (↓;
salinity (↓) only), epithelial cell migration (↑↓)

(Gibbons et al.
2017)

Dissolved oxygen only

Ictalurus punctatus Gill N/A Short term Dissolved oxygen
(↓)

Cellular permeability (Sun et al. 2015)

Gill N/A Short term Dissolved oxygen
(↓)

Apoptosis (↓) (Yuan et al. 2016)
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Table 1. (continued )

Species Tissue

Number of
biological
replicates

Experimental
comparison

Environmental
variable/challenge Key processes involved in response Reference

Larimichthys crocea Brain 6 Short term Dissolved oxygen
(↓)

Neuroendocrine–immune system (↑↓), glycolysis
(↑), protein synthesis (↓), aerobic metabolism (↓)

(Ao et al. 2015)

Megalobrama
amblycephala

Liver, gill 1 (3) Long term Dissolved oxygen
(↓)

Hypoxic signalling (↑), angiogenesis, coagulation,
DNA damage signalling and repair, metabolism

(Li et al. 2015b)

Morone sp. Hepatopancreas 3 (3) Short term, long term Dissolved oxygen
(↓)

Lipid utilization (↑↓), metabolism (↑↓),
autophagy (↑), apoptosis (↓)

(Beck et al. 2016)

O. melastigma Brain, liver, gonad 1 Long term Dissolved oxygen
(↓)

Regulatory miRNAs of unknown biological
function

(Lau et al. 2014)

Gonad 2 (3) Long term Dissolved oxygen
(↓)

Stress response, cell cycle, epigenetic
modification, sugar metabolism, cell motility

(Tse et al. 2016)

Brain 2 (3) Long term Dissolved oxygen
(↓)

Brain development (↑↓), nervous system
development (↑↓), synaptic transmission (↑↓),
axon guidance (↑↓), potassium ion transport (↑↓)

(Lai et al. 2016b)

Gonad 2 (3) Long term Dissolved oxygen
(↓)

Steroidogenesis (↑) (Lai et al. 2016a)

pH only

Leuciscus waleckii Gill, liver, kidney 1 (9–10) Intraspecific pH (↑) Metabolism (↑), immune response (↑), response
to stimulus (↑↓), oxidation–reduction (↑↓),
signalling

(Xu et al. 2013)

Sebastes caurinus Muscle 3–4 Long term,
interspecific

pH (↓) Transcriptional regulation (↑), signalling (↑),
stress response (↑)

(Hamilton et al.
2017)

Sebastes mystinus Muscle 2–3 Long term,
interspecific

pH (↓) Muscle contraction (↑↓), signalling (↑↓),
metabolism (↑↓), cellular structure (↑↓),
transcription (↑↓)

(Hamilton et al.
2017)

Multiple stressors

O. mossambicus Spleen 1 (6) Long term Temperature (↑)* Oxygen metabolism (↑↓), energy metabolism
(↑↓), hypoxic signalling (↑), immune response
(↑↓)

(Wang et al. 2016)

Chanos chanos Brain, gill, liver,
kidney

1 (8) Developmentala, long
termb

Salinitya,
temperatureb (↓)

Metabolism (↑↓) (Hu et al. 2015b)

D. rerio Whole larvae 1 (50) Developmentalc,
short termd

Temperaturecd (↓),
dissolved oxygencd

(↓)

Oxidation–reduction (↑), oxygen transport (↑),
hemoglobin biosynthesis (↑), ion transport (↑),
fatty acid biosynthesis (↑)

(Long et al. 2015)

Colossoma
macropomum

Muscle 1 (6) Short term, long term Temperature (↑),
pH (↓)

Metabolism (↑↓), development (↑), cellular
organization (↑), macromolecule biosynthesis
(↑↓), translation (↓)

(Prado-Lima and
Val 2016)
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Table 1. (concluded )

Species Tissue

Number of
biological
replicates

Experimental
comparison

Environmental
variable/challenge Key processes involved in response Reference

P. borchgrevinki Gill 5 Long term Temperature (↑),
pH(↓)

Immune response (↑), stress response (↑↓), cell
proliferation (↓), cell death (↑), protein folding
and degradation (↑)

(Huth and Place
2016a)

Trematomus
bernacchii

Gill 5 Long term Temperature (↑),
pH (↓)

Immune response (↑), cell death (↑),
carbohydrate and lipid metabolism (↑↓),
signal transduction (↓), cell proliferation (↓)

(Huth and Place
2016b)

Alcolapia grahami Gill 5 Long term,
interspecific

pH (↑), salinity (↑),
temperature (↑),
dissolved oxygen

(↑↓)

Energy metabolism (↑), ion transport (↑),
stress response (↑), immune response (↑),
osmoregulation (↑↓)

(Kavembe et al.
2015)

Note: The number of biological replicates is given with the number of individuals pooled within each replicate denoted in parentheses when applicable. Key
processes involved in responses include those of focal interest to the authors, those to which the greatest number of dysregulated genes were annotated, and those
that showed the highest enrichment, to a maximum of five processes. Arrows indicate the relationship between environmental and response variables, where
applicable. Identical superscripts between the “Experimental comparison” and “Environmental variable/challenge” columns denote which comparisons were
made with which variables when multiple options are present within a study. Asterisks denote that the challenge was conducted in combination with a bacterial
infection.
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later in development, or even across multiple generations (i.e., transgenerational plasticity; Salinas and
Munch 2012). In this section, we discuss both short- and long-term within-generation responses, as
well as non-genetic change that can occur across generations.

Short-term, acute responses
Many experiments have investigated physiological responses to short-term (herein defined as
1–120 h), often extreme conditions, usually with the aim of discovering “tolerance” genes for breeding
or aquaculture (e.g., Liu et al. 2013; Xia et al. 2013; Ao et al. 2015; Sun et al. 2015). These challenge
studies reveal genes involved in short-term stress responses, many of which quickly return to baseline
levels with no consequences to fitness (van Straalen and Feder 2012). These genes are arguably less
likely to be targets for selection during the expected gradual, directional environmental shifts associ-
ated with climate change (Kassahn et al. 2007; Logan and Somero 2010).

Nonetheless, these studies can be informative about the way environmental signals are integrated and
how response pathways evolve, and might help us to understand the resiliency of populations in the
face of extreme weather events that are expected to increase in frequency and magnitude
(Rahmstorf and Coumou 2011). An extensive and rapid response of the transcriptome to high salinity
was found in euryhaline medaka (Oryzias latipes; Wong et al. 2014) and Asian sea bass (Lates
calcarifer; Xia et al. 2013). A high degree of overlap between the genes involved in signalling the
osmoregulatory stress response and those related to other stressors such as handling (Wong et al.
2014), bacterial infection, and fasting (Xia et al. 2013), is consistent with the hypothesis that these
signalling networks evolved in parallel. Metabolic pathways were widely repressed in response to
stress in Asian sea bass but not in medaka, whereas immune genes were upregulated (particularly
those involved in innate immunity) and downregulated in both studies.

With respect to short-term heat stress, heat shock proteins (HSPs) (molecular chaperones that aid in
protein folding and degradation) are upregulated in the majority of fishes studied, including hybrid
catfish (Ictalurus sp.; Liu et al. 2013), snow trout (Schizothorax richardsonii; Barat et al. 2016),
Iberian freshwater fishes (Squalius torgalensis and Squalius carolitertii; Jesus et al. 2016), longfin smelt
(Spirinchus thaleichthys; Jeffries et al. 2016), and tambaqui (Colossoma macropomum; Prado-Lima
and Val 2016). This is consistent with vast numbers of molecular studies on eurythermal fishes
(reviewed by Tomanek 2010). In contrast, stenothermal fishes (e.g., cold-adapted polar or warm-
adapted tropical species) typically lack an inducible heat shock response (Logan and Buckley 2015).
Constitutive expression of HSPs has been observed using microarrays in several polar species
(e.g., Antarctic plunderfish (Harpagifer antarcticus), Thorne et al. 2010; Antarctic emerald notothen
(Trematomus bernacchii), Buckley and Somero 2009), in which denaturation or slow folding of pro-
teins at extremely cold temperatures is hypothesized. However, RNA-seq revealed that HSPs were
actually downregulated in an Antarctic nototheniid (Pagothenia borchgrevinki) after short-term
heat exposure (Bilyk and Cheng 2014; but see Huth and Place 2016a), consistent with an earlier
quantitative-PCR (qPCR) study on H. antarcticus (Clark et al. 2008). These studies point towards
the existence of yet another heat coping mechanism that warrants further study. As with osmoregula-
tory stress, the effect of heat stress on metabolic processes varied among species (Table 1). Notably,
metabolism was strongly upregulated in the heat-stressed catfish (Liu et al. 2013) and delta smelt
(Hypomesus transpacificus; Jeffries et al. 2016), species known for their high thermal tolerance,
whereas a lack of metabolic response was observed in P. borchgrevinki (Bilyk and Cheng 2014).
Such evidence of contrasting responses to heat stress in cold- and warm-adapted fishes sheds light
on how adaptive divergence can alter the contents of the genomic tool kits with which species can
respond to contemporary thermal stress.
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In the model zebrafish (Danio rerio), acute cold stress has repeatedly been associated with large shifts
in transcriptional regulation (Long et al. 2013, 2015; Hu et al. 2015a; Hung et al. 2016). This stress
response substantially overlaps with that induced by hypoxia, both involving the upregulation of
many genes involved in oxygen transport (Long et al. 2013; Long et al. 2015). Hypoxia tolerance has
been associated with variation in the expression of genes involved in a variety of processes, including
the regulation of epithelial permeability (Sun et al. 2015) and repression of cellular apoptosis (Yuan
et al. 2016) in channel catfish (Ictalurus punctatus), avoiding cerebral inflammation in the large
yellow croaker (Larimichthys crocea; Ao et al. 2015), and lipid utilization in a hybrid striped bass
(Morone sp.; Beck et al. 2016).

This limited collation of studies suggests a global coordination of stress response in teleost fishes com-
bined with the regulation of stress-specific genes dependent on species-specific adaptations.

Long-term, chronic responses
After the initial stress response, how do fishes adjust physiologically (i.e., acclimatize) during
prolonged exposure to new environmental conditions? Given that climate change will involve sus-
tained alteration of the environment, the genes and pathways identified in long-term experiments
(herein defined as 1–4 weeks) are more likely to be involved in some form of a plastic response that
has fitness consequences (either adaptive or maladaptive) (Smith et al. 2013).

The general stress response is less apparent following prolonged exposure to increased salinity, consis-
tent with the hypothesis that acclimation is common (Table 1). A vast array of genes and pathways
has been proposed to enable prolonged salinity tolerance, including those involved in ion transport
(Lam et al. 2014; Wang et al. 2014; Gu et al. 2015; Nguyen et al. 2016), blood pressure regulation and
fat metabolism (Xu et al. 2015), and both innate and adaptive immunity (Norman et al. 2014a, 2014b).

The mechanisms by which long-term hypoxia leads to reproductive impairment in the marine med-
aka (Oryzias melastigma) have been determined through sex-specific brain transcriptome sequencing
(Lai et al. 2016b) coupled with gonadal microRNA profiling (Lai et al. 2016a; Tse et al. 2016).
Hypoxia-responsive microRNAs (small non-coding RNAs which can post-transcriptionally modulate
gene expression; Carrington and Ambros 2003) were associated with the upregulation of steroido-
genic enzymes and hormone receptors in the ovary (Lai et al. 2016a) and diverse cellular processes
including epigenetic modifications in the testes (Tse et al. 2016).

HSPs and immune-related genes associated with the short-term heat stress response are likewise
upregulated during prolonged heat exposure in crimson-spotted rainbowfish (Melanotaenia
duboulayi; Smith et al. 2013), redband trout (Oncorhynchus mykiss gairdneri; Narum and Campbell
2015), and half-smooth tongue sole (Cynoglossus semilaevis; Guo et al. 2016) whereas metabolic proc-
esses continue to be one of the most enriched categories of dysregulated genes during long-term heat
stress in these studies. However, immunity-related genes comprise a much smaller proportion of dif-
ferentially expressed transcripts in rainbowfish when compared with short-term challenge studies in
other species. Further, both the number of differentially expressed transcripts and the expression lev-
els of stress response genes decreased over the 4 week duration of the study on redband trout (Narum
and Campbell 2015), suggesting acclimation to heat stress. Limited evidence from microarrays
cautions that even if the stress response decreases following acclimation in heat-tolerant species,
maintenance costs for homeostasis might be higher at warmer temperatures (Logan and Buckley
2015): energetically costly protein biosynthesis and active ion transport were upregulated in the
longjaw mudsucker (Gillicthys mirabilis) after three weeks of heat exposure, whereas HSPs were
largely absent (Logan and Somero 2010). Less energy for foraging, growth, and reproduction would
be available to species with such a response.
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If similar biological processes characterize the majority of dysregulated pathways in both acute and
long-term responses to environmental change, then challenge experiments might reliably be used to
uncover the general physiological processes underlying long-term plastic responses. However, there
is evidently potential for acclimation to decrease the magnitude of the plastic response, and it is not
clear whether the same genes are involved at different times during the response.

Developmental plasticity
Environmental conditions experienced earlier in life can both alter subsequent phenotypes and
impact future plastic responses to the environment through epigenetic mechanisms (i.e., those which
“cause chromosome-bound, heritable changes to gene expression that are not dependent on changes
to DNA sequence”; Deans and Maggert 2015, p. 892). This developmental plasticity or acclimation
can enhance persistence in new and variable environments and result in novel phenotypes that can
facilitate adaptation (West-Eberhard 2003).

For example, through RNA-seq, we are beginning to better understand the mechanisms underlying
the ability of thermal acclimatization to shift the breadth and optima of thermal performance later
in life (sensu Fry and Hart 1948). Embryonic exposure to thermal extremes appears to enhance the
response of adult zebrafish to cold temperatures, surprisingly resulting in greater swimming perfor-
mance regardless of the direction of the extreme (Scott and Johnston 2012). The improved acclima-
tion capacity of the warm-incubated fish was explained by differential expression of genes involved
in energy metabolism, blood vessel development, and muscle contraction and remodelling, which cor-
responded with differences in muscle area and composition (Fig. 1). It would be interesting to know
whether the cold-incubated fish (which were not sequenced) achieved acclimation via the same tran-
scriptional modifications. In a separate study, RNA-seq revealed the molecular basis of “rapid cold
hardening” (Kelty and Lee 2001), whereby brief exposure to mild cold improved larval survival in
the face of severe cold stress (Long et al. 2013). Promoter switching and alternative splicing emerged
as major mechanisms enabling cold tolerance in fishes, consistent with previous studies on a wide
range of stressors in other taxa, although the functional significance of different isoforms remains to
be investigated.

Transgenerational plasticity
Non-genetic parental influences on offspring phenotype can facilitate acclimation across generations
(Mousseau and Fox 1998). Evidence of such transgenerational effects in fishes suggests that they
might play a major role in enabling fish populations to cope with environmental change (Donelson
et al. 2012; Hurst et al. 2012; Miller et al. 2012; Salinas and Munch 2012), particularly in species that
have less capacity for acclimation as adults because they have evolved in a relatively stable environ-
ment (e.g., coral reef fishes; Munday et al. 2012). Veilleux et al. (2015) explored the molecular basis
of this phenomenon, using RNA-seq in a common reef fish (Acanthochromis polyacanthus), by evalu-
ating gene expression and metabolic performance in response to increased temperature both within
and across generations. Differential expression was greater in transgenerationally exposed fish, which
had improved aerobic scope, compared with developmentally exposed fish, for which performance
was reduced relative to the controls (Fig. 2). The biological processes associated with the developmen-
tal response to temperature were also part of the transgenerational response (e.g., metabolism,
immunity, and stress response), as were genes previously found to respond to short-term thermal
challenge (e.g., apolipoproteins; Kassahn et al. 2007; Podrabsky and Somero 2004), suggesting a link
between short-term, developmental, and transgenerational thermal stress responses in fishes.
Interestingly, HSPs were largely absent from both developmental and transgenerational treatments,
suggesting that they might not be good predictors of thermal acclimation capacity.
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(a) (b)

(c) (d)

(e) (f)

Fig. 1. Effect of embryonic temperature (solid line = 27 °C; dashed line = 32 °C) and long-term acclimation temperature on adult zebrafish (Danio rerio)
(a) swimming performance, (b) muscle phenotype, (c) and (d) primary transcriptional responses as identified by principal component analysis, and (e) and
(f) transcription of genes representative of those involved in the primary transcriptional responses, given in normalized read counts (means± SEM). Some error
bars are too small to be seen (redrawn from Scott and Johnston 2012).
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Fig. 2. Heatmap of contigs differentially expressed (adjusted
p < 0.05) between spiny chromis damselfish (Acanthochromis
polyacanthus) developmentally or transgenerationally exposed to
+1.5 °C or +3.0 °C and the controls (+0.0 °C) (modified from
Veilleux et al. 2015).
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The epigenetic mechanisms involved in regulating the developmental and transgenerational thermal
responses above are unknown. In another study, microRNA sequencing has revealed a specific epige-
netic effect of hypoxia that causes transgenerational reproductive impairments in male marine med-
aka (Tse et al. 2016). Sequencing of microRNAs is, therefore, another promising avenue for
understanding how gene expression is fine tuned by epigenetic mechanisms in response to environ-
mental factors throughout development and across generations. The epigenetic mechanisms respon-
sible for regulating developmental and transgenerational plasticity are of substantial interest given
their considerable potential to improve our understanding of the capacity of fishes to cope with rapid
environmental change.

Responses to multiple stressors
Climate change is altering many environmental variables simultaneously (IPCC 2013). Considering
that multiple stressors can have complex interactive effects (Schulte 2007), studies examining the
combined effects of heat and other stressors on fishes are highly relevant to predictions of fish
responses to global climate change.

Heat stress suppressed the immune system of Mozambique tilapia (Oreochromis mossambicus)
infected with a bacterial pathogen, apparently through metabolic constraints imposed by limited
oxygen (Wang et al. 2016). Among the 2000+ differentially expressed genes, rates of synonymous
and nonsynonymous substitutions based on SNPs identified from the O. mossambicus transcriptome
and the closely related, but less disease resistant, Nile tilapia (Oreochromis niloticus) revealed signs of
positive selection in O. mossambicus for 43 genes involved in the immune response and oxidative
respiration. These findings suggest that O. mossambicus has evolved superior disease resistance rela-
tive to O. niloticus, yet its immune system is impaired by heat stress. A better understanding of how
temperature mediates infection in fishes, many of which have unusual or poorly understood immuno-
logical strategies (Buonocore and Gerdol 2016), is urgent as climate change increases the incidence of
disease outbreaks globally (Brander 2007).

Along with rising temperatures, acidification driven by increases in dissolved carbon dioxide is a
major threat to fishes (Pörtner et al. 2004). A long-term dual-stressor time-series experiment on the
Antarctic notothenioid P. borchgrevinki suggests that, when occurring in tandem, these shifts can pro-
duce distinct responses when compared with heat stress alone (Huth and Place 2016a). Huth and
Place (2016a, 2016b) demonstrated an inflammatory response to increased temperatures and pCO2

that lasted at least 7 d, along with an increase in rates of cell death followed by gradual acclimation
to near basal expression levels by 56 d, in two Antarctic notothenioids. However, the degree of
response was reduced overall in P. borchgrevinki compared with T. bernacchii, suggesting that sensi-
tivity to environmental perturbation varies among these closely related cold specialists. In contrast,
the long-term response of Amazonian tambaqui to these dual stressors was dominated by molecular
chaperones and metabolic and developmental processes (Prado-Lima and Val 2016).

The interaction between multiple abiotic stressors has been explored using RNA-seq from a develop-
mental perspective with respect to the extent to which variation in prior exposure along one environ-
mental axis influences the response along a different axis. Although developmental cold exposure has
been reported to protect larval zebrafish against future cold stress, it was associated with decreased
tolerance to lethal hypoxia, whereas prior exposure to mild hypoxia improved both hypoxia and cold
tolerance (Long et al. 2015). Genes involved in oxygen transport were mainly associated with this
process, revealing molecular mechanisms underlying the hypothesis that oxygen limitation is the pri-
mary determinant of thermal tolerance in fishes (Pörtner 2002). Somewhat less intuitively, acclima-
tion to different salinities activated different strategies to cope with cold tolerance in milkfishes
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(Chanos chanos), whereby seawater-acclimated milkfish were more cold tolerant than those accli-
mated to freshwater (Hu et al. 2015b). The seawater-acclimated fish upregulated a suite of genes
related to increasing the energy budget, whereas freshwater-acclimated fish reduced energy loss by
downregulating genes involved in basal metabolism.

These studies highlight the fact that previous exposure and interactions between multiple stressors
can have substantial and perhaps surprising consequences on fitness and are thus critical to under-
standing fish responses to our changing climate.

Evolutionary responses to environmental change
Although individual and transgenerational plasticity can help organisms cope with environmental
change in the short term (e.g., fewer than five generations), responding to ongoing climatic shifts will
involve evolution because traits are not necessarily plastic and (or) reaction norms will no longer be
adaptive in the new environment (Visser 2008). Although empirical evidence is scarce relative to that
of plastic responses (Merilä and Hendry 2014), rapid evolution in response to environmental change
has been documented in a variety of taxa (e.g., Bradshaw and Holzapfel 2001; Umina et al. 2005;
Derry and Arnott 2007; Charmantier et al. 2008), including fishes (reviewed by Crozier and
Hutchings 2014). This section summarizes what has been learned about adaptive responses to envi-
ronmental change in fishes from RNA-seq experiments.

Identifying candidate genes for adaptation
A primary aim of transcriptomics is to identify candidate genes for adaptation; i.e., those genes with
large impacts on fitness under different environmental conditions (Feder and Mitchell-Olds 2003).
This “discovery-driven” approach proved powerful early on in the study of genomic reaction norms
(Aubin-Horth and Renn 2009). RNA-seq offers an advantage for candidate gene discovery because
of its unbiased nature and lack of necessity for prior information (Wang et al. 2009). The studies
described previously identified numerous candidate genes that are potential targets for selection in
response to changes in temperature, salinity, dissolved oxygen concentration, and pH. Armed with
such information, researchers can develop functional markers to monitor for a contemporary
response to climate change (Hoffmann and Willi 2008) or screen broadly across a species range to
predict the potential for adaptation (Hoffmann and Sgrò 2011). The unique opportunities proffered
by RNA-seq have yet to be fully taken advantage of with regard to the evolutionary effects of environ-
mental change on fishes, but this avenue of research holds great potential.

Intraspecific variation in transcriptomes
Transcriptomic variation at the population level can reveal how gene expression evolves in response
to local environmental regimes. Zhang et al. (2015) compared the transcriptomes of two ecotypes of
scaleless carp (Gymnocypris przewalskii) from saline and freshwater lakes. Of the many thousands
of genes that were differentially expressed, they used sequence information to narrow in on just
242 protein-coding genes that showed signs of strong positive selection. The authors concluded that
relatively few genes, chiefly those involved in ion regulation and the immune response, play critical
roles in the shift from saline to freshwater habitats in fishes. An acclimation experiment comparing
native freshwater to anadromous saltwater threespine stickleback (Gasterosteus aculeatus) also
revealed many genes potentially underlying salinity adaptation (Wang et al. 2014). Finally, a rare
study examining the effects of elevated pH on a fish transcriptome described how changes in gene
expression played a key role in the relatively recent shift of Amur ide (Leuciscus waleckii) from fresh-
water to extreme alkalinity in a soda lake (Xu et al. 2013). Further research is needed to determine
whether the intraspecific variation in expression described for the wild-caught fish used in these stud-
ies has a genetic (as opposed to epigenetic) basis, thereby representing adaptive evolution. This could
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be achieved through traditional labour-intensive common-garden experiments or some genetic infer-
ences could perhaps be gleaned more readily by examining allele-specific expression patterns.

Population-level variation in transcriptional plasticity
In addition to shifting the mean phenotype (i.e., reaction norm elevation), evolutionary responses to
environmental change can alter the shape of the plastic response (i.e., reaction norm slope)
(Bradshaw 1965; Lande 2009; Chevin et al. 2010). In fishes, there is evidence from common-garden
experiments of population- and family-level variation in plastic responses to each of the environmen-
tal variables discussed thus far (reviewed by Hutchings 2011 and Oomen and Hutchings 2015). These
experiments are extremely useful for detecting adaptation when combined with measures of fitness;
however, they do not tell us about the genetic mechanisms underlying plastic responses.

RNA-seq allows us to bridge the gap between genotype and phenotype by linking genetic variation
directly to differences in gene expression and then to phenotypic responses observed in the lab.
Such a complete chain has yet to be made within the scope of the present review. Narum and
Campbell (2015) came the closest when they found population-specific patterns of plasticity in
response to heat stress among desert and montane redband trout. The desert population exhibited
greater differential expression (in both the number of genes and the magnitude of the fold change)
compared with either the montane population or their F1 cross (Fig. 3), although all populations
showed evidence of acclimation during the 28-d experiment. HSPs were not upregulated as much in
the desert trout when compared with the montane trout, whereas many genes involved in metabolic
and cellular processes were highly upregulated, suggesting that the desert trout have evolved complex
and specialized molecular mechanisms to cope with heat stress. The F1 cross generally exhibited
intermediate expression patterns between the two populations, consistent with additive genetic varia-
tion, although a greater number of shared differentially expressed genes with the maternal montane
trout suggests a possible maternal or dominant effect at some genes.

Although this novel experiment provides considerable insight into the molecular basis of thermal
adaptation, corresponding physiological and other phenotypic measurements would be extremely
valuable in understanding how changes in individual gene expression are related to fitness. Further,
the inclusion of multiple temperatures in such an experiment would allow for direct quantification
of thermal plasticity within populations. This approach was used by Morris et al. (2014) to compare
levels of transcriptomic thermal plasticity, as determined by microarrays, between ancestral marine
and derived freshwater threespine stickleback populations. More plastic genes were detected in the
derived freshwater populations, supporting the hypothesis that if greater environmental variability
is encountered following colonization of new habitats, it will drive the evolution of greater plasticity
relative to the ancestral population.

Family-level variation in transcriptional plasticity
In addition to population-level variation in transcriptional plasticity, studies in fishes have shown
differences in patterns of gene expression at the family level. Norman et al. (2014b) used a quantitative
trait locus (QTL) approach to reveal the genetic basis underlying the correlation between salinity
tolerance and differential expression of immune genes among families of Arctic char (Salvelinus
alpinus). Interestingly, the majority of QTL associated with ion transport were located near differen-
tially expressed genes, suggesting that cis-regulatory elements (non-coding DNA that regulates
transcription of nearby genes) are involved in controlling their expression. Concomitantly, the major-
ity of differentially expressed genes were not associated with QTL, suggesting that they might be con-
trolled by trans-regulatory elements (those on distant genes). That genetically based differences in
gene expression were found within a lab-bred strain suggests that there might be substantial variation
in transcription within populations.
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Fig. 3. Differential expression of (a) a
desert strain, (b) an F1 cross, and (c) a
montane strain of redband trout
(Oncorhynchus mykiss gairdneri) exposed
to heat stress versus those held at control
temperatures. Significant differentiation
(FDR ≤ 0.05) is indicated in red. Green
and blue lines represent greater than or
equal to twofold and greater than or equal
to fourfold changes, respectively (original
source: Narum and Campbell 2015).
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Knowledge of the extent to which such transcriptional variation is heritable is thus far rather limited,
as attempts to quantify heritability of gene expression are rare. Critically, the ability of a population or
species to respond evolutionarily to environmental change depends on the amount of heritable
genetic variation it possesses for adaptive traits (Hoffmann and Sgrò 2011). In a unique example,
McCairns et al. (2016) used crimson-spotted rainbowfish of known pedigree to demonstrate moder-
ate levels of heritability for transcription and transcriptional plasticity in thermal responses of candi-
date genes that were previously identified using RNA-seq (Smith et al. 2013). Abundant family-level
variation in plasticity for most genes suggests that substantial heritable variation in plasticity might
exist within fish populations for selection to act upon to produce an adaptive evolutionary response
to climate change.

Challenges and directions for future research
The application of RNA-seq to study non-model systems is still in its infancy, and care must be taken
not to overlook its limitations in the rush to adopt the technology (Costa et al. 2013; Todd et al. 2016).
In this section, we describe some of the experimental, analytical, and conceptual challenges raised spe-
cifically by the body of work described herein and highlight some avenues of future exploratory and
confirmatory analyses. For further detail about technical and analytical issues surrounding RNA-seq
experiments in general, we refer the reader to several discussions on the topic (Fang and Cui 2011;
Ozsolak and Milos 2011; Sendler et al. 2011; Costa et al. 2013; Conesa et al. 2016).

Experimental protocols and sampling design
Gene expression is extremely sensitive in that it can potentially change very quickly and in response to
slight environmental variability. This can make sampling protocols challenging, as any manipulations
that fish experience between the environment of interest (whether in the field or laboratory) and the
preservation of tissue for RNA extraction can affect gene expression. Depending on the research ques-
tion, it might be prudent to collect a control sample for handling or transfer stress (e.g., Wong et al.
2014) or avoid feeding prior to sampling (e.g., Liu et al. 2013).

Although relatively inexpensive from an input:output (cost:amount of data generated) perspective,
the substantive financial, laboratory, and computational resources required for RNA-seq appear to
have limited experimental design in terms of sample sizes and numbers of replicates and treatments.
Indeed, of the studies included here, nearly half did not include true biological replicates (at best, sam-
ples were pooled within groups to create a single library for RNA-seq), consistent with the dearth of
replication observed in ecological and evolutionary studies in general (Todd et al. 2016). St. Laurent
et al. (2013) concluded that as few as three biological replicates can be sufficient to detect small
differences in expression in a model system, whereas Robles et al. (2012) found that at least six are
necessary when dealing with low count data (e.g., when using a multiplex sequencing strategy).
However, the increased biological variation inherent in studies on non-model organisms essentially
means that the more biological replication, the better, as it is the only way to cope with the unique
statistical challenges of controlling for false positives during such highly parallelized significance test-
ing while retaining the ability to detect lowly expressed transcripts. Although few replicates can still
produce significant results, they will be biased towards genes with large log-fold changes, and these
are not necessarily the most relevant for fitness (Smith et al. 2013; Evans 2015).

Few of the experimental RNA-seq studies published to date included biological replicates within tank
replicates, which is necessary for estimating variation due to random tank effects. This might be partly
explained by the difficulty of such computations with currently available differential expression analy-
sis software. However, a few experiments dispersed replicates among tanks to eliminate tank variation
as a confounding factor (e.g., Narum and Campbell 2015; Prado-Lima and Val 2016). Studies
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measuring multiple time points are also uncommon because they require multiplying sample sizes,
yet they are key to distinguishing between short-term stress and long-term acclimation responses
(e.g., Narum and Campbell 2015; Xu et al. 2015; Huth and Place 2016a, 2016b). The number of indi-
vidual and tank replicates required is highly dependent on the amount of biological variation within
and between groups, which can be difficult to anticipate as it will likely be extremely case specific.
However, the development of tools to help predict the power of various experimental designs based
on data from pilot experiments (e.g., Scotty (Busby et al. 2013); reviewed by Todd et al. 2016), and
future decreases in the cost of RNA-seq will likely facilitate more robust and complex experiments.
Alternatively, the utility of RNA-seq to explore uncharacterized genomes can be leveraged to design
custom microarrays (Alvarez et al. 2015) for expansion of experimental designs or to reduce the bio-
informatic challenges associated with follow-up experiments. Kusakabe et al. (2017) took advantage of
both RNA-seq and microarrays, combined with QTL mapping, qPCR, whole genome sequencing, and
a genome scan, to confidently identify candidate genes for salinity adaptation in threespine stickle-
back. Notably, the direction and magnitude of expression differences for the genes identified by tran-
scriptome analysis were similar between the RNA-seq and microarray results.

Bioinformatic analysis
The technological limitations of RNA-seq are not of as great concern when compared with the ana-
lytical limitations, as our ability to generate data vastly surpasses our ability to interpret it. Key areas
for improvement in this regard are bioinformatic and genomic resources. Differential expression
analysis programs capable of handling mixed-effects models are needed to control for variation due
to random (e.g., tank) effects. Biological interpretation of large differentially expressed gene lists
remains a major obstacle, although gene set enrichment analyses, which groups genes based on
common biological function, location, or regulation (Subramanian et al. 2005), have become a popu-
lar aid in their distillation to major functional categories (e.g., Liu et al. 2013; Long et al. 2013; Gu et al.
2015). However, there is often a focus on only the largest or most expected functional categories,
potentially ignoring important biological processes involving fewer genes and providing opportunity
for reporting bias and subjective interpretation of results.

When the goal is to identify a reduced set of the most promising candidate genes, complementary
methods using high-resolution sequence data such as testing for positive selection through comparing
rates of synonymous and nonsynonymous substitutions can be helpful (e.g., Kavembe et al. 2015;
Zhang et al. 2015; Wang et al. 2016). Although underutilized in ecological genomics, gene network
construction offers a promising alternative for functional analysis based on the notion that genes with
a higher degree of connectedness have a greater impact on fitness through involvement in multiple
cellular pathways (i.e., hub genes; Costanzo et al. 2010). Although incorporation of differential expres-
sion data improves these networks by taking co-expression into account (Fu et al. 2014), it is not
necessary because they are built using databases of known gene interactions (Evans 2015). If specific
(i.e., candidate) genes are the unit of interest, validation of gene expression using additional samples
(either more biological replicates from the same experiment or, ideally, samples from a different pop-
ulation or incidence of environmental exposure) would be an asset to reduce the potential for false
positives.

A lack of reference data for functional annotation is one of the biggest challenges facing RNA-seq
analysis in an ecological context, a consequence of the fact that annotations are based on homologies
with genes from a few model species and environmental conditions (Pavey et al. 2012). For example,
over half of the transcripts differentially expressed in the heat stress response of crimson-spotted rain-
bowfish could not be annotated (Smith et al. 2013). Pavey et al. (2012) proposed alleviating this prob-
lem by creating a database of ecological annotations (sensu Landry and Aubin-Horth 2007), allowing
for cross-referencing genes and associated environmental variables across studies and species. Such a
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database could be populated with results from functional assays (i.e., experiments which demonstrate
that a gene has a measureable effect on a particular phenotype) such as targeted gene knockdown
or overexpression, as these become available. For example, Hu et al. (2015a) confirmed the cold-
responsive functions of novel cis-regulatory elements discovered using RNA-seq by exposing mutant
and wild-type transgenic zebrafish embryos to different temperatures. Ecological annotations would
complement the current practice of using the Gene Ontology (geneontology.org) to annotate genes
according to cellular component, molecular function, and biological process. However, genes associ-
ated experimentally with particular environmental variables need not necessarily be annotated to
serve as functional markers for ecological studies of environmental adaptation.

Conceptual challenges
Most criticisms of RNA-seq can justifiably pertain to transcriptomics in general. For example, infer-
ring physiological function from gene expression data is inherently problematic due to transcriptional
noise (caused by nonspecific initiation of transcription by RNA polymerase II; Struhl 2007) and time lags
between environmental exposure, transcriptional response, and physiological and fitness consequences
(for a detailed discussion, see van Straalen and Feder 2012). With respect to its utility in discovering can-
didate genes of major consequence for environmental adaptation, the main criticisms
(as proposed by Feder and Walser 2005) are: (1) that such genes are rare, and therefore the wide net
approach of transcriptomics may not be the most effective; (2) that differences in gene expression levels
do not necessarily correlate with differences in fitness; and (3) that post-transcriptional and post-transla-
tional modifications mean that mRNA abundance is not a good predictor of protein abundance, which is
more relevant for fitness and can also be examined directly to address questions of environmental plas-
ticity and adaptation (see Papakostas et al. 2014 and Mäkinen et al. 2016 for examples in the European
grayling (Thymallus thymallus)). Although these issues have persisted to some extent for a decade,
ongoing developments from systems-level experiments, advancing bioinformatic techniques, and addi-
tional gene functional analyses will continue to improve prospects (reviewed by Evans 2015).

Specifically, increasing our ability to detect lowly expressed genes, as described in the previous section,
and dedicating more effort towards interpreting these and moderately differentially expressed tran-
scripts will advance efforts to better understand the genetic basis of plastic and evolutionary responses
to environmental change (e.g., Smith et al. 2013), as plasticity need not be great to have fitness
consequences.

Experiments that directly link gene expression with physiological and other phenotypic traits, particu-
larly measures of fitness, are of vital importance for understanding how transcriptomic variation ulti-
mately affects populations and species. One approach involves following individuals after non-
destructive RNA sampling (potentially at many points during development) through to reproduction
or mortality, thereby providing a more comprehensive and concrete view of how the environment
interacts with development to alter gene expression and, ultimately, fitness. For example, Evans
et al. (2011) combined non-lethal sampling of sockeye salmon (Oncorhynchus nerka) gill tissue
and microarray expression profiling with telemetry to identify transcriptional signatures of mortality
during subsequent upstream migration. In a related experiment, microarray expression profiles
from non-lethal samples were compared between time-matched moribund and surviving wild-caught
salmon after being held for one week at warm, ecologically relevant temperatures (Jeffries et al. 2012).
Such approaches also address a caveat of most experimental RNA-based studies in which
mortality occurs: that only the survivors are sampled.

Another issue inherent in “omics” approaches in general is the difficulty of testing the hypothesis that
a putative candidate gene is indeed of major consequence for environmental adaptation (Evans 2015).
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In addition to functional validation, candidate genes derived from laboratory studies could be vali-
dated in the field such as through broad-scale screening of wild populations coupled with a priori pre-
dictions regarding the expected distributions of variants based on environmental data. A conceptually
similar approach was employed to identify those RNA-seq-derived candidate genes for thermal adap-
tation that occur in the same molecular pathways as genes showing signs of climate-mediated selec-
tion in the wild (McCairns et al. 2016). Notwithstanding the difficulty of controlling for background
genetic variation in such studies on wild populations, although feasible in some systems (e.g., ances-
tral versus derived populations; Barrett et al. 2008), they can independently corroborate the role of
candidate genes in adaptation and contribute to a mechanistic understanding of the impact of geno-
type on fitness (sensu Dalziel et al. 2009).

Conclusion
The popularity of using RNA-seq to study environmental responses in natural populations has
increased rapidly over the past few years and represents a promising method, alone or with other
transcription quantification techniques as part of a “unifying workflow” (Alvarez et al. 2015), to
understand the effects of environmental change on global biodiversity. Field and laboratory experi-
ments on both model and non-model fishes have already provided much insight into the potential
for individuals to respond plastically to short- and long-term environmental stress and for popula-
tions and species to evolve in the face of shifting environmental regimes. Numerous candidate genes
for environmental adaptation have been identified for further study and myriad fish species not men-
tioned here have recently had their transcriptomes characterized (e.g., Li et al. 2015a; Salem et al.
2015; Salisbury et al. 2015; Yue et al. 2015; Fan et al. 2016; Kolder et al. 2016). Coupling this potential
with ongoing technological and bioinformatic advances will lead to rapid developments in this field in
the coming years. In particular, we expect an even greater broadening of the taxonomical and geo-
graphical representation of non-model study species and an increase in downstream analyses that
use the sequence information to further test specific hypotheses derived from initial exploratory
approaches. We also hope to see more studies being interpreted in an ecological or evolutionary con-
text, as this would greatly facilitate their application to the global climate crisis.
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