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Abstract
Multiparameter data with both spatial and temporal components are critical to advancing the state
of environmental science. These data and data collected in the future are most useful when com-
pared with each other and analyzed together, which is often inhibited by inconsistent data formats
and a lack of structured documentation provided by researchers and (or) data repositories. In this
paper we describe a linked table-based structure that encodes multiparameter spatiotemporal data
and their documentation that is both flexible (able to store a wide variety of data sets) and usable
(can easily be viewed, edited, and converted to plottable formats). The format is a collection of five
tables (Data, Locations, Params, Data Sets, and Columns), on which restrictions are placed to
ensure data are represented consistently from multiple sources. These tables can be stored in a
variety of ways including spreadsheet files, comma-separated value (CSV) files, JavaScript object
notation (JSON) files, databases, or objects in a software environment such as R or Python. A tool-
kit for users of R statistical software was also developed to facilitate converting data to and from
the data format. We have used this format to combine data from multiple sources with minimal
metadata loss and to effectively archive and communicate the results of spatiotemporal studies.
We believe that this format and associated discussion of data and data storage will facilitate
increased synergies between past, present, and future data sets in the environmental science
community.
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Introduction
It has long been recognized that synergies between data sets are invaluable to researchers in the
environmental sciences (Carpenter et al. 2009; Peters 2010; Marx 2013; Specht et al. 2015; McKay
and Emile-Geay 2016). Many have noted the opportunities for synthesis among independently col-
lected data sets (Carpenter et al. 2009; Peters 2010; Marx 2013; Specht et al. 2015), and some have
called for software tools to ease the challenges of sharing data sets (Peters 2010). Spatiotemporal data,
or data combining spatial variability with temporal variability, is an important subset of environmen-
tal data (Peters 2010) and includes data from long-term environmental monitoring, paleolimnological
studies, dendrochronological studies, ice cores, and ocean cores. These data are often collected at high
temporal resolution at great effort, the interpretation of which is facilitated by comparison to other
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spatially or temporally proximal data sets. Although online repositories for environmental data have
grown in number (e.g., DataONE, EcoTrends, NCEI Paleo), end-user software tools specifically
dedicated to data exchange among researchers remain lacking.

Spatiotemporal data are by definition multidimensional and sometimes contain many parameters at
high spatial and (or) temporal resolution. There is a high degree of variability in the storage format
for these data sets, which hinders spatial and temporal comparisons of the data (Peters 2010;
Reichman et al. 2011; Emile-Geay and Eshleman 2013; Marx 2013; McKay and Emile-Geay 2016).
Furthermore, when data are not contained within an online repository, a comprehensive description
of locations, parameters, and associated collection and measurement methods are not generally
provided or stored with the data itself. These metadata are essential for both the comparison of a data
set with other data sets (Fegraus et al. 2005; Reichman et al. 2011; Emile-Geay and Eshleman 2013)
and the understanding of a data set by another researcher (Strasser et al. 2012).

All data storage is a balance between flexibility (what information can it store), efficiency (how much
disk space is needed to store the data), and usability (how much manipulation is needed before some-
thing can be done with it; Anderson et al. 2009). An ideal format for environmental data must be
flexible enough to store essential metadata, uncertainty information, and the data set itself in a single
distributable container; efficient enough to store increasingly large data sets; and usable enough to
encourage widespread use in the environmental community. Linked tables (Codd 1971, 1990) have
long been used to store complex data in a single distributable container, but when they are used to
distribute multiparameter spatiotemporal data, their use and format is often inconsistent. This paper
describes an implementation of linked tables that provides a consistent, flexible, efficient, and usable
data format to facilitate data exchange among a rapidly increasing number of multiparameter spatio-
temporal data sets.

Example data
Throughout this paper we will use daily historical climate data from Environment Canada (2017) for
Kentville, Nova Scotia, and Greenwood, Nova Scotia, from July and August of 1999 (Fig. 1). Climate
data collected from climate stations are a common example of multiparameter data collected at
discrete locations with a spatial component where the number of points in time is large. These data
were obtained using the “rclimateca” package and R statistical software (R Core Team 2013;
Dunnington 2017b).

Data formats
At least initially, much multiparameter time-series data are stored in a flat, wide format, with a single
column for each measured parameter and a row for each time or depth measured. This format resem-
bles the “tidy data” format described by Wickham (2014) and draws from the idea of location- and
time-wide representations of spatiotemporal data described by Pebesma (2012). If multiple locations
were measured in a study, the location names can be stored in a column or data from separate
locations can be stored in separate tables. Value uncertainty information can be stored in additional
columns (often one next to each parameter column), which requires a strict format if the data
need to be machine readable. Other metadata that may apply to specific values (e.g., notes, additional
uncertainty information) or parameters (e.g., units, measurement method) are generally lost in
this format. Missing cell values may either indicate that a value was not measured or that it was
below detection limit, and there is generally no way to distinguish the two outside the context of
spreadsheet software. This data format is popular because of its simplicity and its usability.
Spreadsheet software is amenable to visualizing and manipulating data in this format, which has likely
aided its popularity. An example of this format is provided in Table 1.
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Fig. 1. Daily historical climate data from Environment Canada (2017). This data set features daily measurements
of four parameters (Max Temp, Mean Temp, Min Temp, and Total Precip) for two locations (Kentville, Nova
Scotia, and Greenwood, Nova Scotia) during July and August 1999.

Table 1. Example data in a flat, wide format.

Date maxtemp meantemp mintemp totalprecip

1999-07-01 28.5 22.3 16.1 0.5

1999-07-02 30.7 25.0 19.2 1.6

1999-07-03 26.4 22.8 19.2 0.2

1999-07-04 28.6 21.3 14.0 1.0

1999-07-05 26.0 22.9 19.7 0.3

1999-07-06 25.3 17.3 9.3 2.1
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An alternative to a flat, wide format is a flat, long format with a column that specifies which param-
eter was measured, a column that specifies the value of that parameter, and a row for each
time–parameter combination (Pebesma 2012; Wickham 2014). As a result, the table may contain
many more rows than the wide format and contains much repeated information (each time–
parameter combination is included for every measured value, whereas in a wide format each time
value is only included once). Uncertainty information and other metadata that apply to specific val-
ues can be included as an additional column to this table (e.g., notes, additional uncertainty infor-
mation); however, metadata for each parameter–location is still difficult to incorporate. This
format can be edited or manipulated in spreadsheet software, is able to natively retain far more of
the original information than a wide format (e.g., value uncertainty), is able to accommodate
varying observation times across multiple parameters, and allows rapid plot creation via plotting
libraries that include a faceting mechanism (e.g., the “ggplot2” R package; Wickham et al. 2016).
Missing values are explicit and can have a defined meaning in a long format because if a
location–parameter–time combination was not measured, the row will not exist in the table
(Wickham 2014). Conversion to the wide format described above is available in spreadsheet
software (using pivot tables) as well as Python (via the “pandas” package; McKinney 2016) and
R (via the “tidyr” package; Wickham and RStudio 2017). An example of the sample data in a flat,
long format is provided in Table 2.

Many spatiotemporal data are distributed in geographic information system (GIS) data formats,
which generally consist of location information linked to a flat, wide data table (i.e., the attribute
table). When the number of locations is large compared with the number of points in time, multipara-
meter spatial data are effectively stored in these formats. When the number of points in time becomes
large, handling these data in GIS data formats with flat, wide attribute tables becomes unwieldy, and
other structures are needed to avoid attribute tables with a large number of columns (i.e., a column
for each parameter–point in time combination). Pebesma (2012) described a number of R data struc-
tures, provided in the package “spacetime” (Pebesma et al. 2016), which combine GIS structures with
time-series structures, together forming a powerful interface for the visualization and analysis of
single-parameter spatiotemporal data.

Table 2. The first 12 rows of example data in a flat, long format.

Date Parameter Value

1999-07-01 maxtemp 28.5

1999-07-02 maxtemp 30.7

1999-07-03 maxtemp 26.4

1999-07-04 maxtemp 28.6

1999-07-05 maxtemp 26.0

1999-07-06 maxtemp 25.3

1999-07-01 meantemp 22.3

1999-07-02 meantemp 25.0

1999-07-03 meantemp 22.8

1999-07-04 meantemp 21.3

1999-07-05 meantemp 22.9

1999-07-06 meantemp 17.3
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There are many examples of multiparameter spatiotemporal data distribution in flat, long format.
Statistics Canada (statcan.gc.ca/) distributes location information (census tracts) in a spatial data for-
mat, which is linked to actual census data that are distributed in a flat, long format. The US National
Water Quality Monitoring Council (waterqualitydata.us/) distributes historic water quality data from
a number of water quality monitoring organizations in a flat, long format along with location data in a
separate table. The Environment Canada NAtChem data set (ec.gc.ca/natchem/) occasionally distrib-
utes data in a file that contains several linked tables that include location metadata, parameter meta-
data, and column metadata alongside data values, although data values are in a flat, wide format.

The recently proposed linked paleo data (LiPD) format is a nested format for multiparameter spatio-
temporal data implemented in JavaScript object notation (JSON) that is optimized for paleoclimate
data (Emile-Geay and Eshleman 2013; McKay and Emile-Geay 2016). This format is highly structured
and suggests required metadata that should be distributed alongside paleoclimate data. The nested
nature and JSON implementation of this format inhibits editing data directly in spreadsheet software;
however, the underlying data are still stored in tables with one table for each measured parameter, a
column for time, a column for the value of the parameter, and a row for each time measured. This
structure is similar to the flat, long format described above, except data for each parameter are split
into separate tables. The LiPD format also proposes a formal encoding for the interpretation of pale-
oclimate parameters (Emile-Geay and Eshleman 2013; McKay and Emile-Geay 2016), similar to other
formal encodings for ecological metadata (Fegraus et al. 2005).

An ideal data format combines the strengths of all of the above data formats: the ability to view and
edit data in spreadsheet software, the ability to store uncertainty information, the ability to easily visu-
alize the data without complicated manipulation, and the ability to encode metadata that are critical
for interpreting and contextualizing environmental data. In particular, we would argue that making
data formats readable in spreadsheet software is critical to its widespread adoption, as most research-
ers have been trained in this and are comfortable with its use.

Methods

A mostly universal data structure
It is not possible to encode location data, data set metadata, parameter metadata, and the data itself
in a single table without significantly undermining the usability and efficiency of the data structure.
Therefore, we propose several linked tables to describe multiparameter spatiotemporal data: Data,
Locations, Params, Data Sets, and Columns (Tables 3–7). The idea of using linked tables to
describe data is not new (Codd 1971, 1990), and it is likely used in the background of many existing
databases that contain data of this type. Its use to distribute data to the user, however, appears to
be rare.

The Data table includes data set, location, param, x, value, and any additional columns that are per-
tinent to the measured value (e.g., uncertainty information). Here x is a placeholder for the axes
along which the data vary, which may be any combination of date, datetime, depth in core, depth
in water, or some other measure that in combination with data set, location, and param, uniquely
identify a row in the data table. The Locations table includes data set, location, and any other col-
umns that are pertinent to describe the location (e.g., latitude, longitude). The Params table includes
data set, param, and any other columns that are necessary to describe the parameter (e.g., units,
measurement method). The Data Sets table includes data set and any other columns that are neces-
sary to describe the data set. Finally, the Columns table includes data set, table, and column, and any
other columns necessary to describe the meaning of columns that may be included in any of the
Data, Locations, Params, or Data Sets tables (e.g., data type, units). This allows column descriptions

Dunnington and Spooner

FACETS | 2018 | 3: 326–337 | DOI: 10.1139/facets-2017-0026 330
facetsjournal.com

FA
C

E
T

S 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.f
ac

et
sj

ou
rn

al
.c

om
 b

y 
18

.2
24

.3
8.

3 
on

 0
4/

26
/2

4

http://www.statcan.gc.ca/
https://www.waterqualitydata.us/
https://www.ec.gc.ca/natchem/
http://dx.doi.org/10.1139/facets-2017-0026
http://www.facetsjournal.com


and data types to be distributed alongside the data. Each of the Locations, Params, Data Sets, and
Columns tables are intended to be tables in a tidy format (Wickham 2014), with rows corresponding
to the values found in the Data table and columns as variables describing their usage. We will refer to
this format as the mostly universal data (MUData) format. An example of data encoded this form is
provided in Tables 3–7.

Table 3. The first six rows of an example Data table.

Data set Location Param Date Value Flags

ecclimate KENTVILLE CDA CS maxtemp 1999-07-01 28.5 NA

ecclimate KENTVILLE CDA CS maxtemp 1999-07-02 30.7 NA

ecclimate KENTVILLE CDA CS maxtemp 1999-07-03 26.4 NA

ecclimate KENTVILLE CDA CS maxtemp 1999-07-04 28.6 NA

ecclimate KENTVILLE CDA CS maxtemp 1999-07-05 26.0 NA

ecclimate KENTVILLE CDA CS maxtemp 1999-07-06 25.3 NA

Note: The data set column identifies the source of the datum, which is further described in the Data
Sets table; the location column identifies the location at which the datum was collected, which is fur-
ther described in the Locations table; the param column identifies the parameter whose value is given
in the value column, and the date column (the x column) identifies the point in time represented by
the datum. The flags column is an example of arbitrary extra columns that can be included in the
Data table to fully describe the datum. Other examples of columns that could be included in the
Data table are measures of uncertainty such as standard deviation or flags to indicate values that were
below the detection limit.

Table 4. An example Locations table.

Data set Location Station ID Latitude Longitude

ecclimate GREENWOOD A 6354 44.98 −64.92

ecclimate KENTVILLE CDA CS 27141 45.07 −64.48

Note: The data set column identifies the source of the location, which is further described in the Data
Sets table; the location column provides the identifier that is used in the Data table; and other columns
are included to provide metadata about each location.

Table 5. An example Params table.

Data set Param Label Units

ecclimate maxtemp Max Temp (°C) °C

ecclimate mintemp Min Temp (°C) °C

ecclimate meantemp Mean Temp (°C) °C

ecclimate totalprecip Total Precip (mm) mm

Note: The data set column identifies the source of the parameter, which is further described in the
Data Sets table; the param column provides the identifier that is used in the Data table; and other col-
umns are included to provide metadata about each location.
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As a theoretical construct, this format is almost infinitely flexible; the limitations that restrict the
amount, type, and content of the data are dependent on the file format in which the tables are saved
(e.g., database, comma-separated values (CSV), JSON) and not the theoretical data structure itself.
However, without constraints on the amount, type, and content of the data, this structure remains
without utility. Therefore we propose the following restrictions to ensure storing data in this format
facilitates the end goal of increasing comparability among data sets:

• Values in the location, param, and data set columns should be in a human-readable format. In
traditional linked database storage, values in linked columns are numerical identifiers. This
implementation is certainly possible within the MUData structure and may save disk space or
memory when storing large data sets; however, it limits the utility of the data outside the context
of database storage. The values in these columns should be short and alpha-numeric if possible.
Additional details (e.g., units, special labels for labeling plots with non-ASCII characters) should
be delegated to columns in the Locations, Params, Data Sets, and Columns tables as applicable.

• There should be a row in the Locations table for every unique data set–location combination in
the Data table.

• There should be a row in the Params table for every unique data set–param combination in the
Data table.

• There should be a row in the Data set table for every unique value in the data set column of the
Data table. The scope of a data set is intended to mean data from a given source, and columns in
the Data set table could include url, doi, and citation, among others.

• There should be a row in the Columns table for every non-required column in any of the tables.
The values in the type column in the Columns table should be one of integer, double, character,
date, datetime, json, or wkt. Including the ability for JSON-encoded data (json) to be included as

Table 6. An example Data Sets table.

Data set url

ecclimate climate.weather.gc.ca/

Note: The data set column provides the identifier that is used in the Data, Locations, Params, and
Columns tables, and other columns provide metadata about each data set.

Table 7. The first six rows of an example Columns table.

Data set Table Column Type Description

ecclimate Data Data set Character NA

ecclimate Data Location Character NA

ecclimate Data Param Character NA

ecclimate Data Date Date The date in YYYY-MM-DD format

ecclimate Data Value Double The measured value (see params table)

ecclimate Data Flags Character Flags provided by Environment Canada

Note: The data set column identifies the data set for which the column metadata is valid, which is fur-
ther described in the Data Sets table; the table column describes the table for which the column meta-
data applies; the column column describes the column name; the type column describes which one of
type of integer, double, character, date, datetime, wkt, or json applies to the values in that column; and
other columns add additional metadata that apply to each column.
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a column type allows more complex data types to be included in MUData tables; including the
ability for well-known text (wkt) to be included as a column type allows for non-point
geometries (e.g., lines and polygons) to be included in MUData tables, which is particularly
useful in the Locations table.

• The name of the x columns (e.g., date, datetime, or depth in core) in the Data table must remain
constant within an implementation of the MUData structure. Various examples of multipara-
meter spatiotemporal data lend themselves to specific time–date formats (e.g., depth in core,
depth in water, tree-ring number, 14C years before present, years AD, years before present,
calendar date–time), some of which apply only to some disciplines. The purpose of the
x columns is to uniquely identify rows in the Data table in combination with data set, location,
and param. For the purposes of efficient storage, manipulation, and plotting, it is necessary for
this column to be of the same type (e.g., integer, floating point number, date–time) for all of the
data sets included in the Data table. If possible, this value should be numeric or a calendar
date–time, such that plotting routines can understand the value as a continuous variable. The
position of the x columns should be between the param and value columns such that they can
be readily identified.

• Every unique combination of data set, location, param, and x column(s) should identify a
single value in the Data table. Because there can be multiple x columns, replicates can be
included with an x column that numbers replicates 1 to n, where n is the number of replicates
for each data set, location, param, and x column(s). That each row can be uniquely identified
with a set of identifiers is useful, and because multiple x columns are allowed, this constraint is
rarely an issue.

• The encoding of dates and datetimes in the x column(s) (if applicable) should be in ISO 8601
format (e.g., year–month–day for dates, or year–month–day hour–minute–second for
datetimes). Datetimes should represent an unambiguous point in time and specify a timezone
in the Columns table.

• The data type for the value column in the Data table should remain constant. We recognize
that not all parameters may produce measurements of the same data type (e.g., some parameters
values may be a presence–absence measurement or require text to fully describe the value); how-
ever, in practice each column in each table must be of the same data type or automated
plotting–manipulation routines will not produce the expected results. If this constraint is impor-
tant in an implementation of the MUData structure, an additional column (e.g., text_value) could
be included in the Data table, with a missing (NA) value in the value column if the value has no
numeric equivalent.

• A missing value in the value column of the Data table should be explicit rather than implicit
(Wickham 2014). If a value was not measured for a location–param–x columns combination,
there should not be a row with that location–param–x columns combination in the Data table.
This may be desired of there is no natural value of the proper type for the value column,
but information still exists in other columns (e.g., text_value as described above). Depending
on the underlying data structure, a missing value may be represented by NA (R), NaN
(R, Python, and others), or NULL (database).

• The implementation of additional columns to each of the required tables is specific to each
implementation of the MUData structure and could be either multiple columns in each table
or a single column in each table containing key–value pair information in a format such as
JSON or hstore. To facilitate viewing or editing in spreadsheet software, these additional
columns should always have the ability to be displayed as columns. This adds the constraint that
missing values cannot have a meaning in these columns other than that the column is not appli-
cable to that row. If this is an issue, the column should never be included in JSON object–hstore
conversion.

• The MUData structure is specified such that most of the information in the data set is contained
in the Data table. Other tables are useful for providing metadata in an organized, complete, and
computer-readable format; however, reviewing or plotting the Data table should be able to
provide a reasonable idea of what the data contain.
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This structure can also be further modified with additional tables following the guidelines above. For
example, many spatiotemporal studies split time ranges into zones, the start and end of which could
be encoded in a table with columns data set, location, name, x_start, and x_end. In the case of the
example data, it may be desirable to provide a lookup table for “flag” values, which could be encoded
as a table with columns data set, param, flag, and description. Extensions to the format, much like
namespace extensions to Extensible Markup Language (XML), should not interfere with plotting–
manipulation routines that only require the basic MUData structure described here.

Implementations
A MUData structure is fundamentally a group of tables that are related, a format that most naturally
lends itself to a database implementation (Codd 1971, 1990). A database implementation is certainly
possible; however, formats that can be directly read by commonly distributed software such as spread-
sheet software are preferable. One such way is a folder with five CSV files: data.csv, locations.csv,
params.csv, datasets.csv, and columns.csv. These files are readable by spreadsheet software as well as
all major programming languages, with the disadvantage that CSV may not support complex data
values. The collection of files can be combined into a single archive (e.g., ZIP archive) for compression
and (or) distribution. A similar (but less useful to non-spreadsheet users) approach would be a
spreadsheet file with separate “sheets” corresponding to each table.

The MUData structure is particularly amenable to a database implementation, because it contains a
fixed number of tables, each of which contain a fixed number of columns. Non-required columns
can be condensed to key–value pair information which can be stored in a single column using formats
such as JSON or hstore. This implementation would be useful for a large database or where a database
is already used to store location information (e.g., Postgis) and would be viewable in both spreadsheet
and GIS software with a database connection properly configured.

In addition, we have created an R package implementing the MUData structure, with tools to create,
combine, subset, plot, summarize, and write to disk data encoded in the MUData format (R Core
Team 2013; Dunnington 2017a). Currently, the package reads and writes a CSV and a JSON imple-
mentation of the MUData structure as described above. An example of Canadian climate data distri-
bution in this format can be found in the “rclimatca” R package (Dunnington 2017b). The usage of
these packages is outside the scope of this paper; for details readers are referred to package documen-
tation that is available (with the packages) on the Comprehensive R Archive Network.

Discussion
From our experience working with large amounts of multiparameter spatiotemporal data, the MUData
format serves two purposes. First, it serves as a method to combine data frommultiple initial sources. At
a small scale, this can be a number of spreadsheets from several instruments and (or)
laboratories that have processed samples for a given study. At a large scale, this can be combining results
from multiple databases, such as the Environment Canada HYDAT database (wateroffice.ec.gc.ca/) or
Environment Canada historical climate data (climate.weather.gc.ca/). Regardless of the
initial format in which these data are provided, the MUData format offers a template to which most data
can be converted with minimal data loss and minimal metadata loss. This ensures that data from multi-
ple sources can be analysed consistently, repeatably, and completely, without ignoring data flags, detec-
tion limits, and uncertainty information that may be present in the original data.

Second, the MUData format serves as an effective format to communicate study results. The table-
based nature of the format ensures that it is universally viewable, eliminating the need for specialized
software to view the contents of a file. Because metadata, data flags, and uncertainty information can
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be included in the format, data can be communicated within the proper context. We have used this
format to effectively communicate the results of multicore paleolimnological studies and archive
thesis data containing paleolimnological data and water quality monitoring results such that it can
be effectively used in the future.

The MUData format draws from a multitude of existing tools that have been built around linked
tables. The linked structure of the MUData structure resembles a spatial database, which is often
implemented in software such as Postgis. In particular, the Locations table is essentially an attribute
table that could contain a geometry column (Postgis) or be linked to a geometry file (ESRI
Shapefile). Many analysis and plotting routines require data in a flat, wide format (e.g., correlation
matrix as implemented in R, most plotting as implemented in spreadsheet software; Wickham
2014), to which the Data table is easily converted using pivot tables or the R package “tidyr”
(Wickham and RStudio 2017). Analysis and plotting routines that readily handle data in a flat, long
format (Wickham 2011; e.g., pivot tables in spreadsheet software, the “ggplot2” package, and the
split–apply–combine analysis approach; Wickham et al. 2016) can be used directly on the Data table.
Database join operations effectively copy metadata from the Locations, Params, and Data Sets tables
into other tables where the information is relevant for plotting or analysis. In short, converting data
to and from the MUData format in the context of existing data formats and widely distributed
software is easily accomplished.

The MUData format does not, by definition, require the distribution of metadata or uncertainty infor-
mation alongside environmental data; however, its structure and implementations are intended to
encourage such activity by simplifying this task. Tables that list location information and parameters
measured are common in publications, so in many cases these data may already exist in a tabular
form. The metadata requirements of the LiPD and EML formats (Fegraus et al. 2005; Emile-Geay
and Eshleman 2013), such as reference (e.g., DOI), parameter (e.g., units), and location (e.g., coordi-
nates) information, can be accommodated by the Locations, Params, Data Sets, and Columns
tables. Currently, these metadata specifications are implemented in JSON and XML (for LiPD and
Ecological Metadata Language (EML), respectively), which are difficult to edit outside the context of
dedicated software tools. By implementing a metadata specification in a table-based format, users
are able to edit and create metadata using widely applied and widely available spreadsheet software,
increasing the likelihood that metadata are distributed with data outside the context of data reposito-
ries for which they may be required. We hope that this encourages efficient ad-hoc collaboration in
addition to efficient use of large-scale aggregations of environmental data that currently exist.

The type of data to which the MUData structure can be applied includes all data that contain multi-
ple parameters in discrete locations where parameters are measured along a common axis. This
includes climate data collected from fixed climate stations (where parameters may be temperature
or precipitation and the common axis is calendar date), paleolimnological data (where parameters
may be diatom abundance or element concentration and the common axis is depth or age, if an
age-depth model is available), water quality data when sampled at discrete locations (where param-
eters may be pH or water temperature and the common axis is calendar date), among other
examples.

The MUData format is most useful when all values are numeric; a mix of numeric and non-numeric
values in a single column causes many programmatic implementations to interpret all values as
non-numeric, which decreases the usability of the structure in a programmatic context. Similarly,
when the number of locations approaches the number of points in time, storing these data in two
tables as opposed to one begins to inhibit usability rather than increase it. In these situations we hope
the concepts and references included in this paper can also be applied to promote comparability and
documentation of these data sets.
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Conclusions
There is a wealth of information contained in previously collected multiparameter, spatiotemporal data
sets (Carpenter et al. 2009; Peters 2010; Marx 2013; Specht et al. 2015; McKay and Emile-Geay 2016).
These data and data collected in the future are most useful when compared with each other and analyzed
together (Carpenter et al. 2009; Peters 2010; Marx 2013; Specht et al. 2015). Currently, these data are
stored in a variety of formats, some of which limit the degree to which uncertainty information and meta-
data can be distributed alongside the data. The MUData format attempts to ameliorate these issues by
introducing a flexible, efficient, and usable format that is able to distribute metadata and uncertainty infor-
mation alongside the data itself. The format can be implemented as spreadsheet files, CSV files, JSON
files, databases, or objects in a software environment such as R or Python (Dunnington 2017a). The for-
mat can be applied as a storage mechanism, an input format, or an output format for researchers, data
repositories, and software packages seeking to collect and compare multiparameter spatiotemporal data.
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