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Abstract
Ranaviruses are globally emerging infections of poikilothermic vertebrates and belong to the viral
family Iridoviridae. The six species of ranaviruses are responsible for unknown numbers of infections
and disease and mortality events around the world in amphibians, fish, and reptiles. Genomic inves-
tigations have shown that there are 24 core genes shared by all iridoviruses. In this study, we examine
the utility of each of these genes in reconstructing phylogenetic relationships across six species of
Ranavirus. We also performed dot-plot analysis for the 17 isolates in the study. For large-scale differ-
entiation, using the major capsid protein gene creates a tree similar to the whole genome tree. Other
comparable genes include open reading frame (ORF) 19R (a serine–theonine protein kinase) and
ORF 88R (Erv I/Alr Family protein). The poorest candidate for phylogenetic reconstruction, due to
high homology, was ORF 1R (a putative replication factor and (or) DNA binding-packing protein).
There are a plethora of genes that may be useful to examine phylogenies at smaller scales (e.g., to
examine local adaptation); however, they do not necessarily belong to the set of highly conserved core
genes.
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Introduction
Ranaviruses from the viral family Iridoviridae are large double-stranded DNA viruses with a large ver-
tebrate host range (Duffus et al. 2015; Chinchar et al. 2017). They were first described in North
American northern leopard frogs (Rana pipiens now Lithobates pipiens) in the mid-1960s (Granoff
et al. 1965). Since then, they have been described in over a hundred other species of amphibians,
reptiles, and fish from all around the globe (Duffus et al. 2015). Ranaviruses are responsible for count-
less morbidity and mortality events in affected species and have even caused population declines
(e.g., common frogs (Rana temporaria) in the UK; Teacher et al. 2010) and local extirpations
(e.g., multiple species in the Spanish Pyrenees; Price et al. 2014). They are also known to affect threat-
ened and endangered species such as the Chinese giant salamander (Andrias davidanus, Geng et al.
2011) and pallid sturgeon (Scaphirhynchus albus, Waltzek et al. 2014), making them a cause for
conservation concern.
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Currently, there are six species of ranavirus recognized by the International Committee on Taxonomy
of Viruses (ICTV; Chinchar et al. 2017); this is as a result of a deeper understanding of Ranavirus
genomics. Initially, it was thought that the major capsid protein (MCP) was adequate for the study
of viral evolution of iridoviruses, as it has both highly conserved, but also some variable domains
(Tidona et al. 1998). However, some studies have used only portions of the MCP and have had trouble
parsing possible local adaptations (e.g., Duffus and Andrews 2013). Other studies have used multiple
genes, including the MCP, and have been able to detect genetic variation in large-scale data sets
(e.g., Stöhr et al. 2015) and in genetic information from geographically isolated data sets (Ridenhour
and Storfer 2008). While the MCP gene may have enough variation to place ranaviruses into their dif-
ferent species, a study that uses only the MCP may miss local variation or adaptation. For example,
Ridenhour and Storfer (2008) only found evidence of local adaptation of Ambystoma tigrinum virus
strains in the southeastern United States when they examined >5% of the genome and included genes
such as the eIF-2α homologue, which is not present in all iridoviruses.

Eaton et al. (2007) reexamined the genomes of 12 different iridoviruses. They found that there were
26 core genes across all iridoviruses. These core genes are typically conserved, with functions that are
generally associated with virulence, replication, and gene expression (Eaton et al. 2007; Jancovich et al.
2015). However, further molecular studies of newly discovered and sequenced iridovirids bring this total
of shared genes down to 24 (e.g., Shrimp hemocyte iridescent virus lacks the small subunit of ribonu-
cleotide reductase (Qiu et al. 2018) and European Chub Iridovirus lacks a deoxinucleotide reductase
(GenBank accession number MK6376310)). Here we examine the utility of 24 core iridovirus genes
across six species of ranavirus and perform a large scale dot-plot analysis of 17 different isolates.
However, it is important to note that all ranaviruses contain the original 26 core genes and a number
of other genes that are found in all ranaviruses. We hope that the results from this study will be useful
for those who study ranavirus phylogenomics, genomics, and phylogenetics.

Materials and methods

Sequence data and initial analysis
Sequence data from 24 iridovirus core genes were obtained from GeneBank. The accession numbers
of all isolates used, their abbreviations used for this study, and the isolate name as it appears in
GenBank can be found in Table 1. Also see Table 1 for strains that are representative of each species
of ranavirus. Sequence data for each gene was aligned using the default settings of the MAFFT server
(Katoh et al. 2019; mafft.cbrc.jp/alignment/server/). FASTA formatted text files from the MAFFT
alignment were then converted to MEGA format and were then analyzed to find the best fit nucleo-
tide substitution model (Table 2).

Phylogenetic analysis
Phylogenetic analysis was done in MEGA 6 (Tamura et al. 2013). Maximum likelihood trees were
built using the best fit nucleotide substitution model (Table 2; Figs. S1–S22). When the full genome
trees were produced, noncollinear segments were left as such and no attempts at genome reorganiza-
tion were undertaken. (This does not appear to have affected our results, because the trees share sim-
ilar topologies with those created with the previously described 26 iridovirid core genes by Eaton et al.
(2007) (e.g., Eaton et al. 2010; Jancovich et al. 2015)). With the increasing access to full genome
sequencing, the use of the concatenated core genes will become less common and using full genomes
will become the norm, and adjustments for noncolinear segments of the genome will less often be cor-
rected. Open reading frame (ORF) 8R (partially duplicated gene in Singapore grouper iridovirus
(SGIV)) or ORF 27R (truncated gene in SGIV) in our analyses of ranaviruses were not included in
our analysis (data not shown). This is the reason why there are 24 genes in the analysis. The trees that
we created are also unrooted.
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Trees were compared visually using bootstrap values and distances (provided by the scale bars). To
quantify the differences between the full genome tree, the MCP tree and the trees made from each
ORF, CompPhy (Fiorini et al. 2014) was used, and Treedist was then used to determine the symmet-
rical distance between each ORF tree and the full genome or MCP (Felsenstein 2008) (Table 2). Trees
that had a symmetrical distance of 10 and under were considered to be adequate for phylogenetic
reconstruction.

Dot-plot analysis was performed in R (R Core Team 2019) in the package DICIPHER v 2.6
(Wright 2016).

Results
Most of the phylogenetic trees for the 24 core genes of the 17 isolates of ranavirus that were examined
were able to group at the species level (six species). SGIV, however, is problematic as it appears as an
individual group. It is important to note that at the time of this analysis only one sequence of SGIV
was available; however, Grouper Iridovirus (not included in this analysis) may be a strain of SGIV.
The tree constructed with full genome sequences (Fig. 1) shows the usual groupings of the six ranavi-
rus species used in this study. Visually, the best trees, besides those made by the major capsid protein

Table 1. Isolate names, abbreviations used, and accession numbers of all Ranavirus isolates used in this study.

Species designation Name Abbreviation GenBank accession number

Ambystoma tigrinum virus (ATV) Ambystoma tigrinum virus—RRV ATV-3 KR075879.1

Ambystoma tigrinum virus—UTAH ATV-2 KR075877.1

Ambystoma tigrinum virus ATV-1 NC_005832.1

Chinese Giant Salamander
Virus (CGSV)

Andrias davidianus ranavirus—2010SX CGSV-1 KF033124.1

Andrias davidianus ranavirus—1201 CGSV-2 KC865735.1

Chinese giant salamander iridovirus isolate
CGSIV-HN1104

CGSV-3 KF512820.1

Common midwife toad virus
(CMTV)

Common midwife toad ranavirus—Mesotriton
alpestris/2008/E

CMTV-1 JQ231222.1

Common midwife toad ranavirus isolate Pelophylax kl.
esculentus/2013/NL

CMTV-2 KP056312.1

Common midwife toad ranavirus isolate
Pe/2016/Netherlands/UU3160714042

CMTV-3 MF125270.1

Epizootic haematopoietic necrosis
virus (EHNV)

Epizootic haematopoietic necrosis virus EHNV-1 FJ433873.1

European catfish virus (ECV) European catfish virus ECV-1 KT989884.1

European catfish virus ECV-2 KT989885.1

European sheatfish virus (ESV) European sheatfish virus ESV-1 JQ724856.1

Frog virus 3 (FV3) Frog virus 3 FV3-1 NC_005946.1

Frog virus 3 isolate SSME FV3-2 KJ175144.1

Bohle iridovirus BIV-1 KX185156.1

Singapore grouper iridovirus (SGIV) Singapore grouper iridovirus SGIV-1 NC_006549.1
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(ORF 90R in Frog virus 3 (FV3); Fig. 2), are ORF 19R in FV3 (Fig. 3), and ORF 88R in FV3 (Fig. 4).
One of the worst ORFs for reconstruction was ORF 1R in FV3 (Fig. S1) because the branch lengths
were extremely short between the different species with low bootstrap support. (All other trees can
be found in the Figs. S2–S22.)

Table 2. Reference open reading frame (ORF) in Frog virus 3 (FV3) and the best-fit model for nucleotide substitution as determined in MEGA 6.

FV3 ORF Gene namea MEGA 6 best fit model
Distance between

MCP treeb
Distance between
full genome treec

ORF 1R Putative replication factor and (or)
DNA binding or packing protein

Kimura Two Parameter and Invariability 12 14

ORF 2L Myristilated membrane protein Kimura Two Parameter and Invariability 16 14

ORF 9L Putative NTPase I Kimura Two Parameter and Gamma
Distributed

14 16

ORF 12L Unknown Kimura Two Parameter and Invariability 10 14

ORF 15R ATPase-like Protein Kimura Two Parameter 14 18

ORF 19R Serine–threonine protein kinase Kimura Two Parameter 10 12

ORF 21L Helicase family Kimura Two Parameter 16 16

ORF 22R D5 family NTPase involved in
DNA replication

Kimura Two Parameter 14 18

ORF 37R NIF–NLI interacting factor Kimura Two Parameter 12 16

ORF 41R Unknown Kimura Two Parameter 22 22

ORF 53R Myristilated membrane protein Kimura Two Parameter 22 22

ORF 57R Serine–threonine protein kinase Kimura Two Parameter 14 18

ORF 60R DNA polymerase family B exonucleases Kimura Two Parameter 10 12

ORF 62L DNA-dependent RNA polymerase II second
largest subunit

Kimura Two Parameter 10 14

ORF 67L Ribonucleotide reductase small subunit Kimura Two Parameter 6 14

ORF 80L Ribonuclease III Kimura Two Parameter 4 14

ORF 81R Transcription elongation factor TFIIS Kimura Two Parameter 8 20

ORF 84R Proliferating cell nuclear antigen Kimura Two Parameter 14 14

ORF 85R Deoxynucleoside kinase Kimura Two Parameter 10 14

ORF 88R Ervl/Alr family Kimura Two Parameter 12 14

ORF 90R Major capsid protein Kimura Two Parameter 0 12

ORF 91R Immediate early protein infected-cell
protein-46

Kimura Two Parameter 10 10

ORF 94L Hypothetical protein—Clostridium tetani Kimura Two Parameter 6 10

ORF 95R Putative XPPG-RAD2-type nuclease Kimura Two Parameter 14 8

aGene name as defined by Eaton et al. (2007).
bDistance between the major capsid protein (MCP) tree and the stated tree in CompPhy (Fiorini et al. 2014) as calculated by Treedist based on
the symmetric distance (Felsenstein 2008).
cDistance between the full genome sequence tree and the stated tree in CompPhy (Fiorini et al. 2014) as calculated by Treedist based on the
symmetric distance (Felsenstein 2008).
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The trees that had the shortest symmetrical distance (i.e., 10 or below) to the MCP were made from
ORFs 12L, 19R, 60R, 62L, 67L, 80L, 81R, 88R, 91R, and 94L. However, trees that had the shortest sym-
metrical distance to the full genomes were ORF 91R, ORF 94L, and ORF 95R (Table 2).

The best trees over all were made from ORF 19R, ORF 88R, ORF 91R (Fig. S19), and ORF 94L
(Fig. S20) when all three types of analyses were considered together.

Dot-plot analysis of all 17 isolates of ranavirus used in the current study showed collinearity at the
species level (e.g., Common midwife toad virus and Chinese Giant Salamander Virus, FV3, and
Bohle Iridovirus) and there tends to only be smaller genomic rearrangements between most of the dif-
ferent species of Ranavirus. However, SGIV is not collinear with any other ranaviruses analyzed in
this study (see Fig. 5).

Discussion
While most of the 24 core iridovirus genes used in this study will sort out the different ranavirus iso-
lates to the species level, their utility is quite limited for finer-scale differentiation. There are only two
genes that we feel make good approximations to phylogenetic trees constructed with the whole
genome or the full sequence of the major capsid protein gene (ORF 90R in FV3), these are ORFs
19R and 88R when visually compared. ORF 19R is hypothesized to be a serine–threonine protein kin-
ase (Eaton et al. 2007). This group of enzymes typically catalyze the transfer of phosphate groups from
adenosine triphosphate (ATP) to proteins (Jacob et al. 2011). Our results here are surprising because
viral serine–threonine protein kinases are usually highly conserved (Jacob et al. 2011). However, iri-
doviruses are hypothesized to have two serine–threonine protein kinases (ORF57R is a second FV3
serine–threonine kinase) in their core gene set (Eaton et al. 2007). It is common for genes that are
duplicated in the genome to have one that is more variable than the other because of differences in
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Fig. 1. A maximum-likelihood tree made from the whole genomes of the 17 Ranavirus isolates using the general
time reversible model of nucleotide substitution. Bootstrap values are for 1000 replicates. Tree is unrooted. See
Table 1 for the abbreviations used.
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Fig. 2. Maximum likelihood tree using open reading frame 90R, the major capsid protein, sequence data from 17
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nucleotide substitution model was the Kimura 2 parameter. Tree is unrooted. See Table 1 for the abbrevia-
tions used.
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lates created in MEGA 6. Bootstrap values represent 1000 replications and the best fit nucleotide substitution
model was the Kimura 2 parameter. Tree is unrooted. See Table 1 for the abbreviations used.

Ballard et al.

FACETS | 2020 | 5: 523–533 | DOI: 10.1139/facets-2020-0009 528
facetsjournal.com

FA
C

E
T

S 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.f
ac

et
sj

ou
rn

al
.c

om
 b

y 
3.

17
.1

74
.1

56
 o

n 
05

/0
2/

24

http://dx.doi.org/10.1139/facets-2020-0009
http://www.facetsjournal.com


selective pressures and mutation (see Shackelton and Holmes (2004) for a review of large DNA virus
evolution). This is likely what is occurring in the case of ORFs 19R and 57R.

Open reading frame 88R is hypothesized to be an Erv I/Alr family protein (Eaton et al. 2007). These
are sulfhydryl oxidase and are they are known to be far more divergent in viruses than in other organ-
isms (Fass 2008). This sequence flexibility is likely what permits for a finer-scale differentiation
between ranavirus species than other genes that are highly conserved based on functional needs.
There is only a single gene that codes for Erv I/Alr family proteins in the core genes (Eaton et al.
2007), leaving out the potential for a gene duplication event and subsequent divergent evolution of
the two genes within the iridovirus core genome.

Open reading frame 91R is hypothesized to be an immediate early protein infected-cell protein —46
homologue (Eaton et al. 2007). The function of ORF 91R has been partially characterized by Penny
and Brunetti (2019). During infection, its protein product can be found in the nucleus and it is
hypothesized that it is involved with viral DNA transcription as well as involved in one or more early
viral replication processes (Penny and Brunetti 2019). Open reading frame 94L is hypothesized to be a
homologue of a protein found in Clostridium tetani (Eaton et al. 2007). Its protein product localizes in
the endoplasmic reticulum and are hypothesized to have a role in the viral modulation of cellular
secretory pathways based on its structure (Penny and Brunetti 2019).

Our dot-plot analysis shows similar genomic rearrangements within ranaviral species. However,
markedly different genomic arrangements can be seen between different species of ranavirus.
Interestingly, SGIV shows minimal collinearity with the other ranavirus species examined (Fig. 5).
The genome is very different in its arrangement, despite having the same core, and perhaps should
be considered a different iridoviral genera instead of a species within the genus Ranavirus. In our
phylogenetic analyses, SGIV tends also to be divergent, which supports this claim and previous
reports of SGIV being the lowest percent similarity of all ranaviruses (see Stöhr et al. 2015).
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model was the Kimura 2 parameter. Tree is unrooted. See Table 1 for the abbreviations used.
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Fig. 5. A dot plot analysis of the 17 Ranavirus whole genomes that were used in this study. Created in R using (R Core Team 2019) the package DECIPHER v2.0
(Wright 2016). See Table 1 for the abbreviations used.
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Most of the 24 core iridovirus genes are able to more or less sort different ranavirus strains to the
species level; however, it is highly likely that they are not able to show fine-scale differentiation
(e.g., geographical or local adaptations), because they are not sufficiently polymorphic between spe-
cies. Only two genes, ORFs 19R and 88R in FV3, make comparatively supported trees to the major
capsid protein and full genomes visually. However, when the symmetrical distances are analyzed
ORF 91R and 94L may be added to potentially informative sequences for phylogenetic analysis. We
do recommend that single gene sequences alone not be used as there is evidence that multiple targeted
concatenated genes are more useful in reconstructing the true phylogenies because of nucleotide shifts
at the third position of the codon (e.g., yeasts, Collins et al. 2005).

Our dot-plot analysis suggests that each species of ranavirus has undergone unique genome rear-
rangements that are consistent at the species level. However, SGIV is highly divergent and may need
to be considered a separate genera within the Iridoviridae instead of a species of ranavirus. Future
directions should include determining the phylogenetic signal for each of the core genes and examin-
ing the utility of the more divergent core genes in sorting out local adaptations.
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