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Abstract
The resource extraction that powers global economies is often manifested in Indigenous Peoples’
territories. Indigenous Peoples living on the land are careful observers of resulting biodiversity
changes, and Indigenous-led research can provide evidence to inform conservation decisions. In the
Nearctic western boreal forest, landscape change from forest harvesting and petroleum extraction is
intensive and extensive. A First Nations community in the Canadian oil sands co-created camera-trap
research to explore observations of presumptive species declines, seeking to identify the relative
contributions of different industrial sectors to changes in mammal distributions. Camera data were
analyzed via generalized linear models in a model-selection approach. Multiple forestry and petro-
leum extraction features positively and negatively affected boreal mammal species. Pipelines had the
greatest negative effect size (for wolves), whereas well sites had a large positive effect size for multiple
species, suggesting the energy sector as a target for co-management. Co-created research reveals
spatial relationships of disturbance, prey, and predators on Indigenous traditional territories. It pro-
vides hypotheses, tests, and interpretations unique to outside perspectives; Indigenous participation
in conservation management of their territories scales up to benefit global biodiversity conservation.
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Introduction
The agricultural and industrial revolutions that followed European colonization led to widespread
landscape change and ushered the Anthropocene era, in which global systems are largely human
dominated (Vitousek et al. 1997; Steffen et al. 2011; Maxwell et al. 2016). The resource extraction that
powers global economies is often manifested in Indigenous Peoples’ traditional territories (Veltmeyer
2013; Gilberthorpe and Hilson 2016). However Indigenous Peoples are often excluded from conserva-
tion decisions, and their traditional ecological knowledge is often omitted from decision-making
(Thompson et al. 2020). Global economies depend on development across thousands of traditional
territories worldwide; empowering Indigenous communities to manage development on their
territories will scale up for positive impacts on global biodiversity (Garnett et al. 2018).

Across North America, mammalian species have declined markedly since European colonization
(Laliberte and Ripple 2004). However, even in the “remote” regions of the boreal Nearctic, human
occupation dates back millennia (Goebel et al. 2008). First Nations coexisted with wildlife and in some
places managed the land using methods such as prescribed burning (Kimmerer and Lake 2001), and
Indigenous land practices have led to increased forest biodiversity (Fisher et al. 2019). In many areas
Indigenous lands’ biodiversity equals that of federally defined and managed protected areas (Schuster
et al. 2019).

Indigenous Peoples have a strong tradition of oral history, so they are uniquely positioned to observe
and interpret changing conditions within the context of recent history (Gilchrist et al. 2005; Kendrick
and Manseau 2008; Parlee et al. 2014; Kohler et al. 2019). However, consultation for resource
extraction projects is often cursory and superficial (Baker and Westman 2018) and Indigenous
knowledge often discounted. Partnering Indigenous knowledge and western science holds great
promise for understanding how systems work and how anthropogenic change affects those systems
(Mistry and Berardi 2016; Popp et al. 2019), provided it overcomes many noted social barriers
(Carman et al. 2019). Here, we illustrate how Indigenous-led research guided by traditional ecological
knowledge can identify the relationships between industrial landscape features and mammal
distribution, to inform better conservation decisions in areas of dramatic change.

The western Nearctic boreal forest has remained more or less intact until the late 20th century, when
widespread forest harvesting caused changes to mammal (Fisher and Wilkinson 2005) and bird
(Schieck and Song 2006) communities. Soon thereafter, petroleum extraction proved economically
viable and spread across the western boreal forest, creating widespread disturbances unique in their
shapes and in their age and size distributions (Pickell et al. 2013; Pickell et al. 2015). Resource
extraction has impacted mammal distributions (Fisher and Burton 2018) and populations (Burgar
et al. 2019). Pressingly, landscape change has generated precipitous woodland caribou (Rangifer
tarandus) declines (Boutin et al. 2012). Within this landscape, which supports substantial North
American resource extraction economies, live two dozen Indigenous communities who experience
first-hand the environmental and socioeconomic effects of development stemming from ineffective
government consultation and alienation from decision-making, such that that many feel resigned to
suffer the loss of their land and its biodiversity (Westman and Joly 2019).

Within this landscape, the co-authors—Indigenous Peoples of the Whitefish Lake First Nation
(WLFN), a Treaty 8 (Fumoleau 2004) Nation of 3000 people—have a long tradition of subsistence
hunting and close ties with the land. This long relationship has provided the WLFN co-authors with
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traditional ecological knowledge of the land and its species; knowledge collected has been passed
down inherently through generations. It has been ingrained into a way of thinking naturally.
Recently the co-authors observed changes to the wildlife populations on their land: Wherever there
are forest harvesting cutblocks, wolves (Canis lupus) multiply and moose (Alces alces) and
white-tailed deer (Odocoileus virginianus) decline. This varies with water and snow availability in each
season. When there is deeper snow, wolf travel becomes harder, and more moose survive. In summer,
if there is a lot of water, moose survive in wet areas. In dry seasons with forest fires, moose move from
their typical habitats and the wet habitat is lost to them. Fewer moose become available for First
Nations subsistence hunting. In the northeast of the territory, a large forest fire burned in 2011. The
fire left more dead trees on the ground, providing cover as the dead trees fall over. Snowshoe hares
(Lepus americanus) have higher tendency to survive due to the cover provided from fallen trees,
which provide protection from predators. Lynx (Lynx canadensis) follow those hares, and so do
coyote (Canis latrans), so both are more common in those disturbed areas. The increase in industrial
activities has also led to fewer moose. Fewer moose are observed in roaded areas due to collisions and
exposure to poaching (personal observation).

Declines in moose food sources are particularly troubling. Forest harvesting usually increases moose
forage and hence relative abundance, but may exclude moose where patch sizes and context are
insufficient for protection cover and other life-history requirements (Fisher and Wilkinson 2005).
The Nation’s knowledge suggests this latter case, with moose faring poorly in cutblocks and other
cleared landscape features. Moreover, a common prey of wolves, coyotes, and lynx—snowshoe
hare—increases in disturbed areas, with subsequent increases in these predators.

With traditional ecological knowledge suggesting changes to mammal populations in response to
resource extraction, there is impetus to identify the landscape features and associated industrial
sectors affecting mammal distribution as targets for conservation. Forestry and petroleum sectors
are managed separately, and each generates different landscape features. Energy exploration creates
linear “seismic lines” (Dabros et al. 2018); energy extraction creates oil wells, pipelines, and processing
facilities; forest harvesting creates polygonal forest harvest blocks; and the transportation sector
creates networks of roads and trails to support these activities. Cumulatively these induce marked
biotic change on mammal communities (Fisher and Burton 2018; Wittische et al. 2021), but evidence
for which sector has the biggest influence remains unknown. Identifying the landscape features and
associated industry responsible for change allows the Nation to funnel consultation resources into
discussion with that sector and is the first step to targeted conservation (Westman and Joly 2019).

We used camera trapping (Burton et al. 2015; Steenweg et al. 2017) to identify which landscape fea-
tures best explained variability in mammal distribution across the territory. Traditional Knowledge
held by First Nations is made of long-term observations, but we do not have companion western
science data on population trends, so we are constrained to contemporary data. However, if anthropo-
genic landscape features are avoided by a species, and associated with lower space-use across the
territory, we made the logical assumption that these measures are evidentiary of potential population
declines (Hui et al. 2009; Clare et al. 2015; Linden et al. 2017). Our goal was to weigh the relative
importance of anthropogenic features—such as petroleum exploration seismic lines (Dickie et al.
2017; Dabros et al. 2018; Serrouya et al. 2020), forest harvest cutblocks (Fisher and Wilkinson
2005), and well sites, industrial sites, roads, and trails (Fisher and Burton 2018)—in explaining spatial
variability in boreal mammal species’ distributions. Using camera-trapping data, generalized linear
models, and Indigenous knowledge, we sought to understand the extent to which different kinds of
features—those offering resource subsidies, or movement subsidies, or habitat loss (Fisher and
Burton 2018)—affect mammal species in this complex landscape.
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Methods

Study area
We surveyed mammal distribution on the WLFN Treaty 8 Territory in north-central Alberta, Canada
(Fig. 1), a heterogeneous mosaic of white spruce (Picea glauca), black spruce (Picea mariana), aspen
(Populus tremuloides), and Ledum groenlandicum-dominated muskeg. Petroleum exploration and
extraction features, roads, forest harvesting, and off-road trails are dispersed throughout (Fig. 1).

Study design
Through 2018–2019 WLFN people and scientists discussed ecological knowledge about landscape
changes and the design of camera-trapping research. Camera traps can serve as extra eyes on the land-
scape, staying out for long periods and recording mammals in remote locations, but designs must be
tailored to ecological questions (Burton et al. 2015). We worked together (Fig. 2) to select a stratified
sampling design covering a gradient of low–high disturbance, as well as the range of natural variation
in forest cover, across the Territory. In a geographic information system (GIS) we reclassified Alberta
Vegetation Index (AVI) forest inventory data into six landcover strata and randomly allocated
sampling sites equally to each; this design minimized collinearity among landscape feature variables,
while distributing sampling effort across gradients of development and natural variability. We
constrained sites to a minimum of 2 km and maximum of 4 km apart (Fig. 1) to satisfy requirements
of future spatial capture-recapture models (Burgar et al. 2019; Royle et al. 2014).

Camera trapping
WLFN members deployed one ReconyxTM Hyperfire 2 camera (Holmen, WI, USA) at each site, set
on active wildlife trails to increase probability of detecting an animal if present in the immediate
vicinity (Stewart et al. 2019). A first set of 75 cameras were deployed December 2018 – April/May
2019. An additional 25 cameras provided a full set of 100 cameras active March – November 2019.
Cameras were placed approximately 1.5 m above ground on the bole of a tree facing the trail; camera
sensors detect heat-in-motion and were set to “high sensitivity” to record one image with each motion
detection, with no programmed delays between photographs. Images were identified to species by
WLFN peoples using TimeLapse2 Imagine Analysis software.

Landcover data
Dominant natural landcover types were quantified from AVI, and anthropogenic features were
quantified from the Alberta Biodiversity Monitoring Institute’s (ABMI) 2016 human footprint layer
(HF), which yielded 89 landcover categories. We excluded categories with <0.5% coverage and
combined remaining categories into 18 composite variables that represented the most relevant
landscape features (Table S2).

In ArcGIS we drew 1000-m radius buffers around each camera site (Fisher et al. 2011) and calculated
the percent area of each variable within those buffers. To enable comparison of effect sizes we scaled
all landscape variables (mean = 0, SD = 1). We explored collinearity and conducted variance inflation
estimation (Zuur et al. 2007; Zuur et al. 2010), and confirmed there was no collinearity (VIF < 3)
among independent variables.

Model structure
Camera-trap data were discretized monthly; each month is considered an independent Bernoulli trial
(Faraway 2016) in which a species was detected (1) or not (0) by the camera. We call this response
variable “occurrence frequency”; it is the number of months of each species’ detections and
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nondetections, totaling the number of months sampled at that site. For example, a moose detected
5 months of a year would yield (5)(7), a proportional binomial.

To evaluate how each species’ occurrence frequency varies with land cover and anthropogenic
features we applied generalized linear models (GLMs; binomial errors, log link) in

Fig. 1. Whitefish Lake First Nation deployed 100 cameras traps (red circles) across their traditional territories in a
stratified-random design to measure distribution and relative abundance of mammal communities. The territory
is marked by substantial petroleum extraction, including well pads (small black dots) as well as forest harvesting
(dark grey patches). Data source: Government of Alberta Lakes Mapping Data (openalberta.ca) and Alberta
Biodiversity Monitoring Institute’s (ABMI) 2016 Human Footprint Layer (abmi.ca).

Fisher et al.

FACETS | 2021 | 6: 1266–1284 | DOI: 10.1139/facets-2020-0087 1270
facetsjournal.com

FA
C

E
T

S 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.f
ac

et
sj

ou
rn

al
.c

om
 b

y 
18

.1
89

.1
93

.1
72

 o
n 

05
/0

3/
24

http://dx.doi.org/10.1139/facets-2020-0087
http://www.facetsjournal.com


R (R Core Development Team 2013) in a structured hypothesis framework. We modelled species’
monthly occurrence frequency as a function of natural land cover features plus anthropogenic
variables, grouped into the following industry sectors: mining, oil extraction, oil exploration, forestry,
and transportation (Table 1).

Our core model (1) included only natural land cover variables and represented our first hypothesis
that species’ occurrence is best predicted by natural features (Table 1; Supplementary Material 1).
Subsequent models added effects of industry to this core model. We predicted species to avoid mining

Fig. 2. The project co-creation team worked together to develop and implement the research. In 2018 members
of the Whitefish Lake First Nation met with scientists to share their observations and provide guidance on a study.
Together we crafted the study design (1). The Nation members executed the sampling and processed the images
(2–5,7). The University members conducted data analysis (6), and all co-authors developed the manuscript (8).
Aspects of the study that were community-led are on top of the timeline bar, and aspects of the study that were
western science-led are at the bottom of the timeline bar.

Table 1. Natural and anthropogenic landscape features hypothesized to explain boreal mammals’ distribution on Whitefish Lake First Nation traditional
territory in the western boreal forest.

Model set Model no. Variables Feature description

Predicted
association
with species’
habitat use

Core natural 1 Deciduous+Mixedwood+Coniferous +Water+
Meadow+Open Wetland+Aspen/Treed Wetland

Natural land cover classes ±

Mining 2 Core natural model set+ Borrow pits+Gravel pits Natural land cover classes and block disturbance
features associated with mining

−

Oil extraction 3 Core natural model set+ Well sites+ Pipelines Natural land cover classes and both block and linear
disturbance features associated with oil extraction

±

Oil exploration 4 Core natural model set+ Seismic lines+
3-D seismic lines

Natural land cover classes and linear features
associated with oil exploration

±

Forestry 5 Core natural model set+ Young cutblocks+
Old cutblocks

Natural land cover classes and block feature
associated with forestry

+

Transportation 6 Core natural model set+ Paved roads+
Unpaved roads

Natural land cover classes and linear features
associated with transportation

−

Null model 7 Intercept only No features modelled NA
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features due to association with human activity and disturbance (model 2); however, we predicted
both avoidance and selection of landscape features associated with oil extraction and oil exploration
across boreal species. Oil extraction (model 3) was predicted to favor both predator and prey species
due to provision of early seral stage resource subsidies. Oil exploration (model 4) creates seismic lines;
we predicted carnivore species would select for these linear features as a travel corridor (Dickie et al.
2017) and ungulate species would avoid these features due to predation risk. Forestry (model 5) is
expected to be positively associated with most species (Fisher and Wilkinson 2005) due to resources
associated with early seral growth. We predicted species to generally avoid transportation features
(model 6) due to hunting pressures and human disturbance. Our null hypothesis was represented
by an intercept-only model (model 7).

Models were ranked using Akaike Information Criterion scores corrected for small sample size
(AICc) (Burnham and Anderson 2002), balancing deviance explained and the number of model
parameters. We calculated normalized AICc weights (Anderson 2007) that rank the relative support
of the set of models between 0–1, analogous to the probability that the model is best in the candidate
set. We interpreted the models with the highest AICc weights as the best-supported model describing
boreal species distribution on the landscape and support for their corresponding hypotheses.
We calculated evidence ratios (ER; Anderson 2007) to weigh the support of inclusion of industry
covariates in the top-selected model against the core model containing only natural landcover
variables. For example, ER = 2 indicates there is twice the evidence for inclusion of industry covariates
than for exclusion. We assessed model fit and residual dispersion using diagnostic plots and calculated
deviance explained for each model.

Results
We detected multiple mammal species across the Territory (Fig. 3). Snowshoe hare, moose, white-
tailed deer, lynx, black bear (Ursus americanus), wolf, and coyote were most frequently detected
(Table S2).

Species’ response to natural and anthropogenic land cover
variables
Anthropogenic landscape features affected the distribution of all seven mammal species we examined.
The best-supported models explaining species’ monthly occurrence included feature types associated
with industry (Table 2).

Black bear, wolf, coyote, lynx, and snowshoe hare occurrence were predominantly influenced by oil
extraction features, specifically well sites and pipelines (Table 2; Fig. 4). Moose occurrence was best
explained by transportation features and mining features. White-tailed deer occurrence was best
explained by forestry features. With the exception of moose, the additive effects of industrial features
markedly improved models’ explanatory power, compared with natural landcover alone (ER > 100;
Table 2). Inclusion of transportation features (i.e., roads) improved our ability to predict moose
occurrence over 7-fold (Table 2).

Petroleum extraction influenced the greatest number of species but the patterns of selection and
avoidance differed among species (Fig. 4). Wolves, lynx, black bear, and snowshoe hare avoided areas
with greater proportion of pipelines, whereas coyotes selected them. All of these species strongly
selected areas with greater well-site density, with positive effect sizes greater than most natural
features.

The role of natural versus anthropogenic landscape features in explaining moose occurrence is diverse
(Table 2). Model support is insufficient to parse apart the explanatory power of transportation
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features from mining features (ΔAICc = 1.27; Table 2), or oil extraction features (ΔAICc = 1.84), or
even the null model (ΔAICc = 1.80). The forestry model is also closely supported (ΔAICc = 2.9), so
all these features may play a role, albeit with small effect sizes (Fig. 5). In summary, there is some
evidence moose decrease with unpaved roads and increase with paved roads, decrease with new
cutblocks and increase with old cutblocks, but the greatest effect sizes for moose were treed and open
wetlands.

In contrast, white-tailed deer exhibited a very strong positive association with new cutblocks, with an
effect size greater than any natural feature. We observed a weak avoidance of old cutblock stands
in deer.

In summary, petroleum extraction features—oil well sites and pipelines—best explained distributions
of five of the seven mammal species examined, generally outweighing the selection for any natural
landcover variable. Forestry and transportation features explained some variability for deer and
moose.

Fig. 3. Camera-trapping on the Whitefish Lake First Nation’s traditional territory in the western boreal forest
captured images of moose (Alces alces), black bear (Ursus americanus), wolves (Canis lupus), coyotes (Canis
latrans), and lynx (Lynx canadensis), as well as smaller species.
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Discussion
Boreal forest mammals on the First Nation’s traditional territories are affected by the petroleum,
forestry, and transportation sectors. The Canadian boreal forest landscape provides economic benefits
of global importance (Bayoumi and Mühleisen 2006; Giesy et al. 2010; Heyes et al. 2018) but with
costs absorbed by First Nations; although they live on these resource landscapes, they are rarely
involved in management (Wellstead and Stedman 2008; Parlee 2015; Baker and Westman 2018;
Westman and Joly 2019).

Illustrating cumulative effects of multiple sectors has been a Western science goal (Fisher and Burton
2018; Heim et al. 2017), but identifying the landscape features and associated sectors most responsible
for biotic change is a key starting point for First Nations wildlife co-management (Baker and
Westman 2018; Westman and Joly 2019). Co-created research informed by traditional ecological
knowledge (Abu et al. 2019; Colbourne et al. 2019; Skroblin et al. 2019; Wheeler et al. 2020) provides
insights important to effective conservation. Here, the WLFN coauthors’ traditional ecological
knowledge informed a series of model hypotheses that help identify landscape features associated with
mammal distributions and identified the specific landscape feature(s) causing change among multiple
species. Although co-authors suggested forest harvesting was a primary sector affecting wildlife, this
camera-data research suggests oil and gas is generating the most change. We discovered that changes
among predators and prey can be traced to changes in the density of well sites on the landscape, with a
contribution of forest harvesting through inflated white-tailed deer, which are invasive on this land-
scape (Fisher and Burton 2020; Fisher et al. 2020). Although these changes were expected to be con-
textual with recent fire, we did not parse this apart with our industry-focused design.

Moose are a particularly important species here and WLFN traditional ecological knowledge indicates
moose were less abundant in places with forestry and energy extraction on the traditional territory.
This knowledge corroborates evidence from camera-traps and statistical models; the influence of
several sectors is apparent. The Nation observed that oil wells disturb habitats and human activity
on associated roads and trails—by energy workers and hunters—make these areas unsuitable habitat.
The Nation also identified that new cutblocks on their lands are unable to sustain moose; although
this was not the strongest driver of moose occurrence, it was nonetheless detectable. Armed with this

Table 2. Relative support for competing generalized linear models of boreal mammal occurrence frequency, against natural and anthropogenic landscape
features.

ΔAICc Score

Model set (#) Moose Snowshoe hare Wolf Lynx Coyote White-tailed deer Black bear

Natural features (1) 3.83 35.50 39.35 19.45 23.35 69.42 25.26

Mining features (2) 1.27 27.02 41.77 17.18 2.40 51.03 23.79

Oil extraction (3) 1.84 0.00 0.00 0.00 0.00 26.98 0.00

Oil exploration (4) 8.65 14.55 34.40 9.83 20.25 17.28 19.89

Forestry (5) 2.90 12.47 36.36 4.71 4.25 0.00 22.59

Transportation (6) 0.00 34.98 34.26 19.55 8.78 28.92 3.09

Null (7) 1.80 145.47 42.87 66.93 44.17 142.81 57.51

ER: 7.4 >100 >100 >100 >100 >100 >100

Note: The lowest ΔAICc score (bold underlined) represents the best-supported model for each species; bolded scores represent the next closest
model. Evidence Ratios (ER) divide the AICc weight of the top model by that of the natural features model (Model 1).
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evidence, better decisions about land management to conserve moose can be made—provided
Indigenous voices are heard.

Indigenous-led research also unveils hidden complexities. Oil and gas well sites are pervasive on the
western boreal landscape and they generate spatial patterns completely unique from natural disturb-
ance (Pickell et al. 2013; Pickell et al. 2015). Well site deployment removes mature forest and replaces
it with early seral vegetation. However, well sites are on average 1 ha in size (smaller than forest
harvest blocks and fires) and are pervasive (Fig. 1), creating hundreds of patches of young vegetation
embedded within an otherwise intact forested matrix. Well sites offer a resource subsidy that
snowshoe hares capitalized upon, likely bolstered by the 2011 forest fire as per the WLFN co-authors’
observations. Also following their observations, hare predators—lynx, coyote, and wolf—then exploit
this abundance of hares. Lynx, as snowshoe hare specialists (Ward and Krebs 1985; Murray et al.
1994; Stenseth et al. 1997), cue into these prey-rich sites. Coyotes, which prey upon snowshoe hares

Fig. 4. The scaled effect sizes (β coefficients) of the best-supported model relating landscape features and boreal mammals’ occurrence frequency on the
Whitefish Lake First Nations traditional territory in the western boreal forest. Values greater than zero represent selection; below zero, avoidance.
Anthropogenic landscape features affected all mammal species, but features resulting from different sectors—forestry, energy, and transportation—were
important for different species.
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Fig. 5. Moose response to industrial features on the Whitefish Lake First Nation traditional territory in the western boreal forest, from closely competing models
are ranked by Akaike Information Criterion scores. The effect sizes (slopes) are comparatively small, but a negative effect of new forest harvest blocks and
pipelines is apparent.
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(Murray et al. 1994; O’Donoghue et al. 1997; O’Donoghue et al. 1998a, 1998b) and other small and
mid-sized mammals (Dumond et al. 2001), likewise select well pads with their abundant prey.
Wolves prey on these same small mammals (Floyd et al. 1978; Thurber et al. 1992; Weaver 1993;
Arjo et al. 2002; Urton and Hobson 2005), and our data suggest wolves too are cueing in on well sites.
Black bears use both vegetation and prey subsidies. Thus, the pattern the WLFN co-authors observed
with fires—of hares increasing followed by predators—is also mirrored in areas with high well site
density.

Wolves (Bergerud et al. 1983; Messier and Crête 1985; Marshal and Boutin 1999) and coyotes (Benson
and Patterson 2013) prey on moose. Thus, with increased small prey use comes increased predator
density, and well sites—which would otherwise offer an early-seral vegetation resource subsidy, but
instead represent a high-risk landscape feature for moose, which avoid them. Indigenous knowledge
corroborates this contention: the Nation has repeatedly observed that moose use developed areas
for only 2–3 d then move on. Wolves follow them into these areas, pushing them off, or killing them.
Given that well sites offer early seral vegetation resource subsidies embedded in escape cover, and that
comparable small forest harvest areas are elsewhere selected by moose (Fisher and Wilkinson 2005),
the predator avoidance hypothesis appears to offer a parsimonious explanation and is supported both
by Indigenous ecological knowledge and by evidence from camera-trap data.

Past western science suggests linear features are key to wolves, as linear features expedite travel
(Dickie et al. 2017) especially in winter, thereby increasing predation rates on woodland caribou
(Whittington et al. 2011; McKenzie et al. 2012). In this landscape, effects of seismic lines did not
predominate, and instead well sites best explained wolf distribution. Although seismic lines are the
focus for landscape restoration efforts in western Canada (Dabros et al. 2018; Tattersall et al. 2019;
Serrouya et al. 2020), this Indigenous-led research suggests well sites should also be a focus of restora-
tion. Co-management of landscape planning between industry and the Nation might prevent negative
effects on wildlife from the start.

Conclusions
Our approach identifies the most important targets for management on traditional territories, most
likely to produce positive change. Though landscape management for conservation across the whole
boreal may be prohibitively expensive, targeting the foremost problem for the most species is a wise
approach for triage (Schneider et al. 2010; Hebblewhite 2017).

Indigenous-led research can be used as globally as the technology allows (Steenweg et al. 2017) to
inform statistical models built from Indigenous knowledge (Skroblin et al. 2019), and resulting
conservation decisions can yield substantial positive outcomes for conservation science (Carman et al.
2019; Kohler et al. 2019). Co-management of resources is an evolving trend globally (Castro and
Nielsen 2001; Spak 2005; Ross et al. 2009), hopefully replacing consultation processes that are
ineffective in implementing vital conservation knowledge and advice (Thompson et al. 2020).

The United Nations Declaration on the Rights of Indigenous Peoples (Gilbert 2007) calls for First
Nations’ involvement in development of their lands. Consultation processes are often insufficient
for conservation (Baker and Westman 2018; Westman and Joly 2019; Thompson et al. 2020) as
witnessed by continuing biodiversity declines in extraction landscapes around the world. We illustrate
how co-created Indigenous-led research that informs the conceptual foundation for research, the
goals, the hypotheses, and the interpretation of results, yields valuable insights different to a single
western-science perspective: in this case, multiple wildlife species are more likely to occur in areas
with dense petroleum well sites. Multiple modes of knowledge are needed to tease apart the growing

Fisher et al.

FACETS | 2021 | 6: 1266–1284 | DOI: 10.1139/facets-2020-0087 1277
facetsjournal.com

FA
C

E
T

S 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.f
ac

et
sj

ou
rn

al
.c

om
 b

y 
18

.1
89

.1
93

.1
72

 o
n 

05
/0

3/
24

http://dx.doi.org/10.1139/facets-2020-0087
http://www.facetsjournal.com


complexity of species interactions and response to disturbance in rapidly changing landscapes,
hopefully leading to better management decisions to conserve biodiversity.
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