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Abstract
Attenuated skeletal muscle glucose uptake (GU) has been observed with advancing age. It is
important to elucidate the mechanisms linked to interventions that oppose this detrimental outcome.
Earlier research using young rodents and (or) cultured myocytes reported that treatment with
5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR; an AMP-activated protein
kinase (AMPK) activator) can increase γ3-AMPK activity and reduce membrane cholesterol content,
each of which has been proposed to elevate GU. However, the effect of AICAR treatment on
γ3-AMPK activity and membrane cholesterol in skeletal muscle of aged animals has not been
reported. Our purpose was to evaluate the effects of AICAR treatment on these potential mechanisms
for enhanced glucose uptake in the skeletal muscle of aged animals. Epitrochlearis muscles from
26–27-month-old male rats were isolated and incubated ± AICAR, followed by 3 h incubation
without AICAR, and then incubation with 3-O-methyl-[3 H] glucose (to assess GU ± insulin).
Muscles were also analyzed for γ3-AMPK activity and membrane cholesterol content. Prior AICAR
treatment led to increased γ3-AMPK activity, reduced membrane cholesterol content, and enhanced
glucose uptake in skeletal muscle from aged rats. These observations revealed that two potential
mechanisms for greater GU previously observed in younger animals and (or) cell models are also
potentially relevant for enhanced GU by muscles from older animals.

Key words: insulin sensitivity, glucose transport, AMP-activated protein kinase, aging, cholesterol,
skeletal muscle.

Introduction
Epidemiological data indicate that the prevalence of prediabetes and diabetes is progressively
increased with advancing age (Cowie et al. 2009). Skeletal muscle is the tissue responsible for the
major portion of insulin-mediated glucose disposal, and insulin resistance is an essential defect
contributing to the development of type 2 diabetes (DeFronzo et al. 2015). These circumstances
motivate efforts to identify and understand interventions that improve glucose uptake by skeletal
muscle at advanced ages.
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Previous exercise research has demonstrated that skeletal muscle retains a considerable reserve
capacity to increase muscle glucose uptake even during old age (Cartee et al. 1993; Xiao et al. 2013;
Sharma et al. 2015; Cartee et al. 2016; Oki et al. 2020). However, not all older individuals have the
ability and (or) willingness to perform sufficient exercise to gain this important health benefit.
Accordingly, it is worthwhile to explore other strategies to enhance muscle glucose uptake during
advanced age. Strong evidence links the activation of skeletal muscle AMPK (adenosine monophos-
phate-activated protein kinase) to elevated glucose uptake by skeletal muscle. Fisher et al. (2002)
reported that the incubation of isolated rat skeletal muscle with the AMPK activator AICAR
(5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside) results in subsequently increased
insulin-stimulated glucose uptake. AMPK is a heterodimeric enzyme that is comprised of alpha
(α1 or α2), beta (β1 or β2), and gamma (γ1, γ2, or γ3) subunits (Kjobsted et al. 2016; Kjobsted et al.
2018). The γ3 subunit is notable because it is almost exclusively expressed in skeletal muscle, and
the ability of AICAR-treatment to enhance insulin-stimulated glucose uptake by rodent skeletal
muscle is absent in γ3-knockout (KO) mice (Mahlapuu et al. 2004; Kjobsted et al. 2015). These results
provide compelling evidence that γ3-AMPK is essential for this important outcome.

The enhanced insulin-stimulated glucose uptake in skeletal muscle several hours after AICAR
treatment is accompanied by greater phosphorylation of a protein known as AS160 (also called Akt
substrate of 160 kDa or TBC1D4) (Kjobsted et al. 2015). AS160 is a Rab-GTPase activating protein
that plays a key role in regulating insulin-stimulated GLUT4 glucose transporter translocation and
glucose uptake (Sano et al. 2003; Cartee 2015). Prior AICAR treatment leads to greater AS160
phosphorylation on key phosphosites that regulate insulin-stimulated glucose uptake, and the
improvement in insulin-stimulated glucose uptake after AICAR treatment is not found in the skeletal
muscle of AS160-KO mice (Kjobsted et al. 2019). These observations implicate AS160 as a key protein
for AICAR-induced improvement in glucose uptake.

We recently reported that prior treatment of skeletal muscle from old rats with AICAR resulted in
increased insulin-stimulated glucose uptake that was accompanied by greater AS160 phosphorylation
(Oki et al. 2018). However, the effect of AICAR on γ3-AMPK activity in the skeletal muscle of aged
animals has not been previously reported. Therefore, our first aim was to determine if AICAR leads
to greater γ3-AMPK activity in skeletal muscle from old rats.

In addition to the evidence that AMPK-induced phosphorylation of AS160 is important for the
elevated insulin-stimulated glucose uptake in skeletal muscle after AICAR treatment, there is also
support for another possible mechanism to contribute to the AICAR/AMPK-dependent increase in
glucose uptake. An inverse relationship has been observed between membrane cholesterol and glucose
uptake by skeletal muscle (Grice et al. 2019; Habegger et al. 2012b; Sanchez-Aguilera et al. 2018).
Furthermore, research using L6 skeletal muscle cells indicated that AICAR can stimulate AMPK,
lower membrane cholesterol, and increase insulin-stimulated glucose uptake (Habegger et al.
2012a). Therefore, the second aim was to determine if AICAR treatment of skeletal muscle from old
rats resulted in altered membrane cholesterol content. HMGCR (3-hydroxy-3-methylglutaryl
coenzyme A reductase), the rate-limiting enzyme for cholesterol synthesis, is phosphorylated by
AMPK on a site that regulates HMGCR activity (Clarke and Hardie 1990), and ABCA1 (ATP-binding
cassette transporter A1) is an important protein for cellular cholesterol efflux (Wang and Tall 2003;
Larrede et al. 2009). Accordingly, we also evaluated the effect of AICAR treatment on the phospho-
rylation of HMGCR and ABCA1 in the skeletal muscle of old rats.

TBC1D1 is an AS160-paralog and Rab-GTPase-activating protein expressed by skeletal muscle that
can be phosphorylated by AMPK in response to AICAR treatment and that regulates glucose uptake
(Taylor et al. 2008; Cartee 2015; Chen et al. 2017). However, the effect of prior AICAR treatment on
TBC1D1 phosphorylation in skeletal muscle of old rats has not been previously reported.
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Accordingly, our third aim was to determine prior AICAR treatment’s effect on phosphorylation of
TBC1D1 on Ser237, a site implicated in AICAR-stimulated glucose uptake (Taylor et al. 2008; Chen
et al. 2017). We also evaluated TBC1D1 Thr590, a site that can be phosphorylated in response to
insulin (Pehmoller et al. 2009; Vichaiwong et al. 2010).

Materials and methods

Materials
Chemicals were purchased from Sigma-Aldrich (St. Louis, MO) or Fisher Scientific (Hanover Park,
IL) unless otherwise noted. The reagents and apparatus for SDS-PAGE and nonfat dry milk
(no. 170-6404) were obtained from Bio-Rad (Hercules, CA). Pierce MemCode Reversible Protein
Stain Kit (#24585), Bicinchoninic acid protein assay (#23225), Tissue Protein Extraction Reagent
(TPER; #78510), Protein G magnetic beads (#10004D), and DynaMagTM-2 magnet (#12321D) were
from Thermo Fisher Scientific (Waltham, MA). Anti-phospho Akt Ser473 (pAktSer473; #9271), anti-
phospho Akt Thr308 (pAktThr308; #13038), anti-Akt (#4691), anti-phospho AS160 Thr642

(pAS160Thr642; #8881), anti-phospho AS160 Ser588 (pAS160Ser588; #8730), anti-phospho AMPKα
Thr172 (pAMPKαThr172; #2531), anti-AMP-activated protein kinase-α (AMPKα; #5831), anti-acetyl
CoA carboxylase (ACC; #3676), anti-phospho ACC Ser79 (pACCSer79; #3661), anti-TBC1D1
(#5929), anti-hexokinase II (HKII; #2867), anti-insulin receptor (IR; #3025), anti-α-Tubulin
(#2144), anti-Na+/K+-ATPase (#3010) and anti-rabbit IgG horseradish peroxidase conjugate
(#7074) were from Cell Signaling Technology (Danvers, MA). Anti-phospho TBC1D1 Thr590
(pTBC1D1Thr590; #AF2422) was from Sapphire North America (Ann Arbor, MI). Anti-phospho
AS160 Ser704 (pAS160Ser704) was provided by Dr. Jonas Thue Treebak (Novo Nordisk Foundation
Center for Basic Metabolic Research, University of Copenhagen, Denmark). Anti AMP-activated pro-
tein kinase γ3 (γ3-AMPK) was provided by Dr. David Thomson (Brigham Young University, USA)
(Hardman et al. 2014). Anti-Akt Substrate of 160 kDa (AS160; #ABS54), Anti-GLUT4 (GLUT4;
#CBL243), Anti-phospho-TBC1D1 Ser237 (pTBC1D1Ser237; #07-2268), P81 Phosphocellulose
Squares (#20-134) and enhanced chemiluminescence Luminata Forte Western HRP Substrate
(#WBLUF0100) were from MilliporeSigma (Billerica, MA). Anti-HMGCR (HMGCR, #BS-5068 R)
and anti-phospho HMGCR Ser872 (pHMGCRSer872, # BS-4063 R) were from Bioss Antibodies
(Woburn, MA). Anti-ABCA1 (ABCA1, #NB400-105SS) was from Novus Biologicals (Littleton,
CO). Anti-phospho ABCA1 Ser2054 (pABCA1Ser2054; #ab12064) was from Abcam (Cambridge,
MA). 3-O-methyl-[3 H] glucose ([3 H]3-MG) was from Sigma-Aldrich, and [14C] mannitol was from
PerkinElmer (Boston, MA). [γ-33 P]-ATP was from American Radiolabeled Chemicals, Inc. (St. Louis,
MO). Liquid scintillation cocktail (#111195-CS) was from Research Products International (Mount
Prospect, IL).

Animal treatment
Animal care procedures were approved by the University of Michigan Committee on Use and Care of
Animals and performed in accordance with the guidelines from the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health, USA. Male Fischer-344 X Brown Norway
rats were obtained from the National Institute of Aging (NIA) rodent colony at approximately
22–23 months old. Rats were individually housed at the University of Michigan (12:12 h light:dark
cycle, lights out at 17:00 h), provided with standard rodent chow (Laboratory Diet no. 5L0D;
LabDiet, St. Louis, MO) and water ad libitum. The terminal experiment was performed when the rats
were approximately 26–27 months old, and the rats were fasted at approximately 17:00 on the night
before the experiment.
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Muscle dissection and incubation
Rats were deeply anesthetized by an intraperitoneal injection of ketamine–xylazine cocktail
(50 mg/kg ketamine and 5 mg/kg xylazine), and both epitrochlearis muscles from each rat were
dissected out and longitudinally split into two muscle strips. The muscle strips were placed in vials
that were shaken at 45 oscillations per minute and continuously gassed (95% O2/5% CO2) in a heated
(35 °C) water bath. For muscles analyzed to determine 3-MG uptake and signaling proteins, each
muscle strip was incubated with a four-step process (Incubation Protocol 1). During step
1 (60 min), muscle strips were incubated with Krebs-Henseleit Buffer (KHB) supplemented with
8 mM glucose ± 2 mM AICAR (2 mM mannitol for without AICAR). During step 2 (180 min), all
muscle strips were incubated in KHB supplemented with 8 mM glucose and 2 mM mannitol in the
absence of AICAR. During step 3 (30 min), muscle strips were incubated with KHB supplemented
with 0.1% bovine serum albumin (BSA), 2 mM sodium pyruvate, and 6 mM mannitol ± insulin
(1.2 nM). During step 4 (20 min), muscle strips were incubated with KHB–BSA, the same concentra-
tion of insulin as previous step 3, 8 mM 3-MG (final specific activity of 250 μCi/mmol, [3 H]3-MG),
and 2 mM mannitol (final specific activity of 50 μCi/mmol [14C]-mannitol). After step 4, the final
incubation step, muscles were blotted, freeze-clamped, and stored at −80 °C for later processing and
analysis.

For muscles analyzed to determine γ3-AMPK activity, two muscle strips from one epitrochlearis
muscle were incubated with KHB ± 2 mM AICAR (2 mM mannitol for without AICAR) for 60 min
(Incubation Protocol 2), then the muscle strips were blotted, freeze-clamped, and stored at −80 °C
for later analysis. Two muscle strips from the contralateral epitrochlearis muscle were incubated with
a four-step process (Incubation Protocol 3) in which step 1 and step 2 were the same as Incubation
Protocol 1. During steps 3 and 4 (30 min and 20 min), muscle strips were incubated with KHB sup-
plemented with 0.1% BSA, 2 mM sodium pyruvate and 6 mM mannitol with insulin (1.2 nM). For
muscles analyzed to determine membrane cholesterol and cholesterol regulatory proteins, each
muscle strip from both epitrochlearis muscles was incubated with Incubation Protocol 3. After the
final incubation step, muscles were blotted, freeze-clamped, and stored at −80 °C until later process-
ing and analysis.

Muscle lysate preparation
Frozen muscles were weighed and homogenized with 1 mL ice-cold lysis buffer using a glass pestle
attached to motorized homogenizer (Caframo, Georgian Bluffs, ON). For muscle lysates analyzed to
determine 3-MG uptake, protein abundance and phosphorylation by immunoblotting, the lysis buffer
contained T-PER Tissue Protein Extraction Reagent (#PI-78510; Thermo Scientific, Rockford, IL)
supplemented with 1 mM EDTA, 1 mM EGTA, 2.5 mM sodium pyrophosphate (NaPPi), 1 mM
sodium orthovanadate (Na3VO4), 1 mM ß-glycerophosphate, 1 μg/mL leupeptin, and 1 mM
phenylmethylsulfonyl fluoride (PMSF). For muscle lysates analyzed to determine γ3-AMPK activity,
the lysis buffer contained 10% glycerol, 20 mM NaPPi, 1% NP-40, 2 mM PMSF, 150 mM sodium
chloride (NaCl), 50 mM HEPES (pH 7.5), 20 mM β-glycerophosphate, 10 mM sodium fluoride
(NaF), 1 mM EDTA, 1 mM EGTA, 10 μg/mL aprotinin, 10 μg/mL leupeptin, and 2 m MNa3VO4.
Homogenates were rotated for 1 h at 4 °C prior to centrifugation (15,000 g for 15 min at 4 °C). The
supernatants were transferred to microfuge tubes and stored at −80 °C until subsequent analyses.
Protein concentration was measured using the bicinchoninic acid procedure.

3-MG uptake
Aliquots of the supernatants (200 μL) from muscle lysates were pipetted into a vial together with
scintillation cocktail. A scintillation counter (PerkinElmer) was used to determine the 3H and 14C
disintegrations per minute. 3-MG uptake was calculated as described by Cartee and Bohn (1995).
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γ3-AMPK activity assay
The specificity of the γ3-AMPK antibody used for immunoprecipitation (IP) was previously
confirmed in Wang et al. (2018). AMPK activity was determined as described by Kjobsted et al.
(2015). Briefly, muscle lysates (300 μg protein) were rotated with antibody γ3-AMPK (1:500) and IP
buffer [50 mM NaCl, 1% Triton X-100, 50 mM NaF, 5 mM NaPPi, 20 mM Tris-base (pH 7.5),
500 μM PMSF, 2 mM dithiothreitol (DTT), 5 μg/mL leupeptin, 50 μg/mL soybean trypsin inhibitor,
6 mM benzamidine, and 250 mM sucrose] at 4 °C overnight. 50 μL of protein G-magnetic beads were
added to each sample, then the samples were rotated for 2 h at 4 °C. DynaMagTM-2 magnet was used
to pellet the protein G-immunocomplex. Each immunopellet was washed once in IP buffer, once in
6 × assay buffer (240 mMHEPES, 480 mMNaCl, pH 7.0), twice in 3 × assay buffer (1:1). The reaction
was initiated at 30 °C by the addition of 30 μL of kinase mix buffer (40 mM HEPES, pH 7.5, 80 mM
NaCl, 800 μM DTT, 200 μM AMP, 100 μM AMARA peptide, 5 mM magnesium chloride, 200 μM
ATP, and 2 μCi of [γ-33 P]-ATP). After 30 min, the reaction was stopped by the addition of 10 μL
of 1% phosphoric acid. Next, 30 μL of supernatant was spotted on P81 phosphocellulose paper.
After 3 × 15 min washing with 1% phosphoric acid, followed by 1 × 5 min washing with acetone,
the phosphocellulose paper was dried at room temperature and placed in the vials containing 8 mL
scintillation cocktail for scintillation counting. Results were expressed relative to the normalized mean
of all the samples from each experiment.

Membrane fractionation and cholesterol content measurement
Membrane-enriched and cytosol-depleted fractions were obtained by differential centrifugation as
described by Grice et al. (2019). Briefly, epitrochlearis muscles were homogenized in ice-cold HES
buffer (20 mM HEPES, pH 7.4, 2 mM EGTA, and 250 mM sucrose, 200 μM PMSF, 10 μg/mL
pepstatin, and 1 μg/mL leupeptin) with a Polytron PT-3100 homogenizer. The homogenates were
centrifuged at 1,380 g for 30 min at 4 °C, and the resulting supernatant was saved. The pellet was
resuspended with HES buffer and centrifuged at 1,380 g for 30 min at 4 °C, the resulting supernatant
was saved. Then the two supernatants were combined and centrifuged at 17,000 g for 30 min at 4 °C.
This combined supernatant (cytosol fraction) was saved. The pellet was washed with HES buffer and
centrifuged at 1,380 g for 30 min at 4 °C, the resulting supernatant was saved. Then this supernatant
was centrifuged at 17,000 g for 30 min at 4 °C. The resulting pellet (membrane-enriched fraction) was
resuspended in HES buffer and stored at −80 °C until analysis.

Membrane enrichment was assessed by immunoblotting with antibodies against membrane marker
proteins (insulin receptor, IR; Na+/K+-ATPase) and a cytosolic marker protein (α-tubulin).
Cholesterol content in the membrane-enriched fraction was determined using the Amplex Red
Cholesterol Assay Kit (Thermo Scientific; #A12216) as described by Grice et al. (2019).

Immunoblotting
Immunoblotting procedures were described by Wang et al. (2018). An equal amount of protein from
each muscle lysate was mixed with 6 × Laemmli buffer, boiled for 5 min, separated using SDS-PAGE,
and then transferred to polyvinylidene difluoride membranes. Equal loading was confirmed using the
MemCode protein stain (Antharavally et al. 2004). Membranes were blocked with TBST (Tris-
buffered saline, pH 7.5 plus 0.1% Tween-20) that was supplemented with either with 5% BSA or 5%
nonfat milk for 1 h at room temperature, incubated with appropriate concentrations of primary and
secondary antibodies. Then membranes were subjected to enhanced chemiluminescence and
quantified by densitometry (AlphaView; ProteinSimple, San Jose, CA). Results for each sample
(densitometric units) were expressed relative to the normalized average of all the samples on the blot.
These normalized values were divided by the corresponding MemCode loading control value for each
sample (using individual sample MemCode values that were normalized by dividing the mean
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MemCode values for all samples on each blot). Values for phosphorylated proteins were expressed as
the ratio of phosphorylated signaling protein or enzyme to total signaling protein or enzyme
(determined for each sample using a separate immunoblot with a primary antibody against the appro-
priate total signaling protein or enzyme).

Statistical analysis
Student’s t-test was used for comparisons between two groups. Two-way analysis of variance
(ANOVA) was used to identify main effects of insulin (0 or 1.2 nM insulin) and AICAR (0 or
2 mM AICAR). Post-hoc analysis was performed using the Tukey test (SigmaPlot version 14.5;
Systat Software, San Jose, CA). Data lacking normal distribution and (or) equal variance were
mathematically transformed to achieve normality and equal variance prior to statistical analysis.

Results

3-MG uptake
Glucose uptake with insulin alone exceeded values without either AICAR or insulin (P < 0.05; Fig. 1),
and glucose uptake in the AICAR + insulin group exceeded both the insulin alone group (P < 0.01)
and the AICAR alone group (P < 0.05).

γ3-AMPK activity
To gain insight into the time-course for AICAR effects on γ3-AMPK activity, we determined
γ3-AMPK activity immediately post-AICAR treatment (immediate post-AICAR) and 3 h
post-AICAR treatment (3 h post-AICAR). γ3-AMPK activity was increased immediate post-AICAR
(P < 0.001, Fig. 2A). After 3 h of recovery from AICAR stimulation, muscles with AICAR treatment
had greater γ3-AMPK activity compared with unstimulated control muscles (P < 0.01, Fig. 2B). This
result indicates a persistent effect of prior AICAR stimulation on γ3-AMPK activity.

Fig. 1. 3-O-methyl-glucose (3-MG) uptake in epitrochlearis muscles. *Insulin versus without insulin within the
same 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) treatment (P < 0.05). †AICAR versus
without AICAR within the same insulin concentration (P < 0.01). Data were analyzed using two-way analysis
(insulin × AICAR) of variance. Tukey post hoc analysis was performed to identify significant differences.
Values are means ± SD; n = 7 per treatment group.
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Immunoblotting
For all of the phosphorylated proteins, the data were expressed as a ratio of the phosphorylated to
total protein values.

Total abundance of signaling proteins
There were no significant effects of insulin or AICAR on total Akt, AMPK, and TBC1D1 abundance.
Total AS160 abundance in muscles without insulin was less than in muscles with insulin, either
without (∼35%, P < 0.05) or with prior AICAR treatment (∼29%, P < 0.05). ANOVA revealed a
significant Insulin ×AICAR interaction for total ACC abundance (P < 0.05). Total ACC abundance
in the AICAR alone group was less (∼22%, P < 0.01) than in the group without either AICAR or
insulin (P < 0.01).

Akt phosphorylation
AktThr308 phosphorylation in muscles with insulin was greater than in muscles without either AICAR
or insulin (P < 0.001; Fig. 3A), as well as insulin + AICAR exceeded AICAR alone (P < 0.001).
AktSer473 phosphorylation was increased by insulin, either in the absence (P < 0.001; Fig. 3B) or
presence of AICAR (P < 0.001).

AS160 phosphorylation
ANOVA revealed a significant Insulin × AICAR interaction for AS160Ser704 phosphorylation
(P < 0.05; Fig. 4A) and AS160Thr642 phosphorylation (P < 0.05; Fig. 4C). AS160Ser704 phosphoryla-
tion with AICAR alone exceeded without AICAR or insulin (P < 0.05; Fig. 4A), and the
AICAR + insulin group was greater than both the insulin alone group (P < 0.001) and the AICAR
alone group (P < 0.001). AS160Ser588 phosphorylation was increased by insulin, either in the absence
(P < 0.01; Fig. 4B) or presence of AICAR (P < 0.01). AS160Thr642 phosphorylation with insulin alone
was greater than without either AICAR or insulin, and the AICAR+ insulin group exceeded both the
insulin alone group (P < 0.01; Fig. 4C) and the AICAR alone group (P < 0.001).

Fig. 2. (A) γ3-AMPK activity in epitrochlearis muscles from immediately post 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) treatment.
(B) γ3-AMPK activity in epitrochlearis muscles from 3 h post AICAR treatment. †AICAR versus without AICAR at the same time point (P < 0.001 for
immediate post AICAR; P < 0.01 for 3 h post AICAR). Data were analyzed by Student’s t-test, Values are means ± SD; n = 6–7 per treatment group.
Immediately-post AICAR, immediately post AICAR treatment; 3 h-Post AICAR, 3 h post AICAR treatment. Note: AMP-activated protein kinase, AMPK.
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AMPKα and ACC phosphorylation
AMPKαThr172 (Fig. 5A) or ACCSer79 phosphorylation (Fig. 5B) was increased by prior AICAR
treatment, regardless of insulin concentration (P < 0.05 without insulin; P < 0.01 with insulin for
pAMPKαThr172; P < 0.001 without or with insulin for pACCSer79).

TBC1D1 phosphorylation
TBC1D1Ser237 phosphorylation was increased with prior AICAR treatment, either in the absence
(P < 0.05; Fig. 5C) or presence of insulin (P < 0.05). For TBC1D1Thr590 phosphorylation, there were
no significant effects of insulin or AICAR (Fig. 5D).

GLUT4 and HKII abundance
There were no significant effects of insulin or AICAR on either GLUT4 or HKII abundance. (Fig. 6A
and 6B).

Membrane cholesterol content
The membrane fraction was enriched with membrane marker proteins (IR, Na+/K+-ATPase) and
depleted of the cytosolic marker protein (α-tubulin; Fig. 7A). Skeletal muscle membrane cholesterol
content was decreased by prior AICAR treatment (P < 0.05; Fig. 7B).

Fig. 3. (A) Phosphorylated AktThr308/Akt and (B) Phosphorylated AktSer473/Akt, in epitrochlearis muscles. *Insulin versus without insulin with the same
5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) treatment (P < 0.001 for pAktThr308/Akt and pAkt Ser473/Akt). Data were analyzed using
two-way analysis (insulin × AICAR) of variance. Tukey post hoc analysis was performed to identify significant differences. Values are means ± SD; n = 7 per
treatment group. The figure includes representative blots of phosphorylated signaling proteins and corresponding total signaling proteins below the graph.
Total protein (based on MemCode staining) served as the loading control.
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HMGCR and ABCA1 phosphorylation
Phosphorylated HMGCRSer872 and phosphorylated ABCA1Ser2054 were unaltered by prior AICAR
treatment (Fig. 7C and 7D).

Discussion
The purpose of the current study was to evaluate several potential mechanisms that might contribute
to the AICAR-induced enhancement of glucose uptake by skeletal muscle from 26–27-month-old
rats. The results revealed that prior AICAR treatment of skeletal muscle resulted in a robust and
sustained increase in γ3-AMPK activity. Prior AICAR treatment also resulted in a significant decline
in membrane cholesterol content. In addition, AICAR-treated muscle had greater TBC1D1Ser237

phosphorylation. Based on these results, it is possible that one or more of these outcomes contributed
to the AICAR-related increase in glucose uptake.

Muscles incubated with AICAR had greater glucose uptake determined both in the presence
and absence of insulin. We previously used the same incubation protocol with muscles from
24-month-old, male Fischer-344 X Brown Norway (FBN) rats, and found that prior AICAR treatment
led to increased glucose uptake in muscles incubated with insulin, but not in muscles incubated
without insulin (Oki et al. 2018). Both the current study and Oki et al. (2018) evaluated isolated epi-
trochlearis muscles from male FBN rats. It is uncertain if the modest difference in age (26–27-month-
old in current study versus 24-month-old in Oki et al. (2018)) was a factor in the differing effects of
AICAR on insulin-independent glucose uptake. However, the relative AICAR-induced increase in

Fig. 4. (A) Phosphorylated AS160Ser704/AS160; (B) Phosphorylated AS160 Ser588/AS160 and (C) Phosphorylated AS160Thr642/AS160, in epitrochlearis muscles.
*Insulin versus without insulin within the same 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) treatment (P < 0.01 with AICAR for
pAS160Ser704/AS160; P < 0.01 for pAS160Ser588/AS160, P < 0.001 for pAS160Thr642/AS160). †AICAR versus without AICAR with the same insulin concentration
(P < 0.05 without insulin and P < 0.001 with insulin for pAS160Ser704/AS160; P < 0.01 with insulin for pAS160Thr642/AS160). Data were analyzed using two-way
analysis (insulin × AICAR) of variance. Tukey post hoc analysis was performed to identify significant differences. Values are means ± SD; n = 7 per treatment
group. The figure includes representative blots of phosphorylated signaling proteins and corresponding total signaling proteins below the graph. Total protein
(based on MemCode staining) served as the loading control. Note: Akt substrate of 160 kDa, AS160.
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glucose in insulin-stimulated muscles was roughly similar in the current study (49% increase) com-
pared to the earlier study (57% increase). Thus, prior AICAR treatment has consistently resulted in
a substantial increase in glucose uptake by insulin-stimulated muscles from old rats.

Fig. 5. (A) Phosphorylated AMPKαThr172/AMPKα; (B) Phosphorylated ACCSer79/ACC; (C) Phosphorylated
TBC1D1Ser237/TBC1D1; (D) Phosphorylated TBC1D1Thr590/TBC1D1, in epitrochlearis muscles. †5-aminoimidazole-
4-carboxamide-1-β-d-ribofuranoside (AICAR) versus without AICAR with the same insulin concentration
(P < 0.05 without insulin and P < 0.01 with insulin for pAMPKαThr172/AMPKα; P < 0.001 for pACCSer79/ACC;
P < 0.05 for pTBC1D1Ser237/TBC1D1). Data were analyzed using two-way analysis (insulin × AICAR) of variance.
Tukey post hoc analysis was performed to identify significant differences. Values are means ± SD; n = 7 per treat-
ment group. The figure includes representative blots of phosphorylated signaling proteins and corresponding total
signaling proteins below the graph. Total protein (based on MemCode staining) served as the loading control.
Note: AMP-activated protein kinase, AMPK; acetyl CoA carboxylase, ACC.
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Consistent with our previous study, AICAR caused a substantial increase AMPKThr172 phosphoryla-
tion in the skeletal muscle from old rats. AICAR also resulted in elevated phosphorylation of
ACCSer79, an ACC phosphosite that is frequently used as a surrogate marker for elevated AMPK
activity (Hardie 1992; Scott et al. 2002). AICAR also increased the phosphorylation of other AMPK
substrates, AS160Ser704 and TBC1D1Ser237. Muscle γ3-AMPK activity was substantially elevated both
immediately after AICAR treatment and more than 3 h after AICAR incubation. However, AICAR
did not result in elevated phosphorylation of HMGCRSer872 (an AMPK substrate). The absence of a
uniform AICAR effect on the phosphorylation of all AMPK substrates may be related to the fact that,
in addition to kinase activation, the phosphorylation status of a specific protein is subject to other
regulatory factors, e.g., co-localization of the kinase and substrate, and substrate dephosphorylation
by protein phosphatases.

Prior AICAR treatment did not amplify proximal insulin signaling at the level of Akt phosphoryla-
tion. This observation is consistent with earlier studies in muscles from young mice (Kjobsted et al.
2015; Jørgensen et al. 2018), young rats (Fisher et al. 2002), and old rats (Oki et al. 2018). AICAR
treatment also led to enhanced phosphorylation of AS160 on Thr642 (an Akt phosphosite) and
Ser704 (an AMPK phosphosite) in insulin-stimulated muscles. Previous research has reported greater
phosphorylation on one or both of these sites in muscles from young mice (Kjobsted et al. 2015;
Jørgensen et al. 2018). There is evidence that AMPK-mediated phosphorylation of Ser704 may favor
greater Thr642 phosphorylation (Kjobsted et al. 2015). Elimination of AS160 expression in young
AS160-KO mice prevented the enhanced insulin-stimulated glucose uptake observed after incubation
with AICAR (Kjobsted et al. 2019). In this context, it is reasonable to suspect that AS160 contributed
to the effect of AICAR on glucose uptake observed in muscles from old rats in the current study.

AICAR led to greater TBC1D1 phosphorylation on Ser237, which is an AMPK phosphosite (Espelage
et al. 2020). Similar results have been reported for muscles from young mice (Vichaiwong et al. 2010;
Kjobsted et al. 2015; Jørgensen et al. 2018), but muscles from old animals had not been previously

Fig. 6. (A) GLUT4 abundance in epitrochlearis muscles. (B) Hexokinase II abundance in epitrochlearis muscles.
Data were analyzed using two-way analysis (insulin × 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside
(AICAR)) of variance. Tukey post hoc analysis was performed to identify significant differences. Values are
means ± SD; n = 7 per treatment group. The figure includes representative blots. Total protein (based on
MemCode staining) served as the loading control.
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evaluated. Preventing phosphorylation in young mice with a skeletal muscle-specific knock-in
mutation of TBC1D1Ser231Ala (Ser231 in mice corresponds to Ser237) resulted in a partial reduction
in AICAR-stimulated glucose uptake at a low AICAR concentration (0.15 mM) (Chen et al. 2017).
However, the knock-in mutation did not attenuate glucose uptake in response to 2 mM AICAR
(Chen et al. 2017), which is the AICAR concentration used in the current study. As expected, phos-
phorylation of this AMPK phosphosite was unaffected by insulin in muscles of old rats. Neither
AICAR nor insulin resulted in greater TBC1D1 phosphorylation on Thr590, which is an Akt phos-
phosite (Espelage et al. 2020). Some studies have reported that a pharmacologic insulin dose can
enhance Thr590 phosphorylation in muscles from young mice (Pehmoller et al. 2009; Vichaiwong
et al. 2010). Conversely, an insulin concentration similar to the dose used in the current study failed
to increase Thr590 phosphorylation in muscles from either lean or obese middle-aged humans
(Middelbeek et al. 2013). Furthermore, insulin-stimulated GLUT4 translocation is not attenuated in
skeletal muscle from TBC1D1-KO rats (Whitfield et al. 2017). Although a role for TBC1D1 remains
possible, it seems unlikely that the AICAR effect on glucose uptake by the muscles from old rats
was entirely attributable to TBC1D1.

Membrane cholesterol was 15% lower for the muscles incubated with AICAR, and this outcome was
accompanied by a 49% AICAR-related increase in glucose uptake by insulin-stimulated muscles.

Fig. 7. (A) Membrane and cytosolic marker proteins. (B) Membrane cholesterol content, (C) pHMGCRSer872/
HMGCR and (D) pABCA1Ser2054/ABCA1, in epitrochlearis muscles. †5-aminoimidazole-4-carboxamide-1-β-d-
ribofuranoside (AICAR) versus without AICAR, P < 0.05. Data were analyzed by Student’s t-test, values are
means ± SD; n = 6–7 per group. The figure includes representative blots of phosphorylated enzymes and corre-
sponding total enzymes above the graph. Total protein (based on MemCode staining) served as the loading con-
trol. Lysates for membrane and cytosol enriched fractions were loaded on the same gel. The vertical line between
the final lane for the membrane samples and the initial lane for the cytosol samples denotes that the membrane
and cytosol samples were loaded on the same gel. The individual membrane samples and cytosol samples were
from the same muscles. Note: 3-hydroxy-3-methylglutaryl coenzyme A reductase, HMCR; ATP-binding cassette
transporter A1, ABCA1.
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These results are similar to the AICAR-related decrease (∼10%) in membrane cholesterol and
AICAR-related increase (∼50%) in plasma membrane GLUT4 content in insulin-stimulated L6 cells
(Habegger et al. 2012a). These findings suggest that the magnitude of AICAR-related change in
membrane cholesterol in muscles from old rats might have been sufficient to play a role in the
increased glucose uptake. The lack of an AICAR-effect on the phosphorylation of either of the
enzymes that can modulate membrane cholesterol content (HMGCRSer872, an AMPK substrate, and
ABCA1Ser2054, a protein kinase A substrate) indicates that another mechanism was likely responsible
for the reduction in membrane cholesterol. However, it is possible that AICAR caused a transient
increase phosphorylation of HMGCRSer872 and (or) ABCA1Ser2054 that had reversed when the muscles
were sampled, more than 3 h after being incubated with AICAR.

Most mammalian cells, including skeletal muscle cells, cannot catabolize cholesterol, and excess
cholesterol is either expelled from the cell via transporter proteins or stored as cholesteryl esters in
lipid droplets (Luo et al. 2020). While ABCA1 is the cholesterol transporter protein that has been
most widely studied in skeletal muscle, mRNA expression of another cholesterol exporter, ABCG1
(ATP binding cassette transporter G1), has also been detected in skeletal muscle (Myers et al. 2006;
Cheung et al. 2017; Morgan et al. 2020). AMPK can enhance ABCG1 mRNA and protein expression
and cholesterol efflux from macrophages (Li et al. 2010), but evidence is lacking about ABCG1’s
protein abundance, regulation, and relative contribution to cholesterol efflux in skeletal muscle. In
addition, the possibility that the AICAR-induced decline in membrane cholesterol might be
secondary to greater cholesterol esterification and storage in skeletal muscle lipid droplets remains
to be evaluated.

Several novel results in the current study advanced knowledge related to the mechanisms underlying
improved glucose uptake in skeletal muscle of old rats after brief treatment with AICAR. The most
striking new observation was that AICAR treatment led to a marked increase in γ3-AMPK activity,
and this increase was sustained more than 3 h after the exposure to AICAR. The magnitude and dura-
tion of this effect in the muscle of old rats, taken together with the strong evidence from young mice
that γ3-AMPK is crucial for long-lasting effects on glucose uptake after transient AICAR incubation
(Kjobsted et al. 2015), supports the idea that γ3-AMPK plays a role in the elevated glucose uptake
in AICAR-treated muscles from old rats. It has been widely recognized that the highly selective
expression of γ3-AMPK in skeletal muscle offers an opportunity to create a compound with selective
action on skeletal muscle with reduced chance of unwanted side-effects in other tissues (Mahlapuu
et al. 2004; Kjobsted et al. 2018; Steinberg and Carling 2019; Rhein et al. 2021). Another intriguing
and novel result of the current study was the AICAR-induced decrement in membrane cholesterol
of skeletal muscle from old rats.

It will be important for future research to determine if γ3-AMPK has a role in the regulation of
membrane cholesterol content and to directly test the extent to which the AICAR-induced decrement
in membrane cholesterol contributed to elevated glucose uptake. The role of γ3-AMPK could be
evaluated using genetically modified mouse models that lack γ3-AMPK expression (Barnes et al.
2004; Rhein et al. 2021). The extent to which a decline in membrane cholesterol plays a role
in enhanced glucose uptake could be assessed using the cholesterol-depleting chemical methyl-β-
cyclodextrin (MβCD). Previous research demonstrated that MβCD can lower membrane cholesterol
in cultured mouse myofibers and palmitate-treated L6 muscle cells (Habegger et al. 2012b; Llanos et al.
2015). Incubating AICAR-treated L6 muscle cells with MβCD that was complexed with cholesterol
(MβCD-cholesterol), which can be used to replenish membrane cholesterol, eliminated the AICAR-
mediated decrease in membrane cholesterol (Habegger et al. 2012a). MβCD-cholesterol could be used
to eliminate the AICAR-induced decrement in skeletal muscle membrane cholesterol content to test if
reduced membrane cholesterol is necessary for AICAR’s effect on glucose uptake.
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