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Abstract
Holocene fire records from charcoal are critical to understand linkages between regional climate and
fire regime and to create effective fire management plans. The Hudson Bay Lowlands (HBL) of
Canada is one of the largest continuous peatland complexes in the world and is predicted to be
increasingly impacted by wildfire. We present three charcoal records from a bog in the western
HBL and demonstrate that median fire frequency was higher in the Middle Holocene, related to
warmer regional temperatures and higher evaporative demand. Holocene fire frequencies are lower
than in western Canadian peatlands, supporting that the HBL lies in the transition between
continental and humid boreal fire regimes. Apparent carbon accumulation rates at the site were not
significantly different between the Middle and Late Holocene, suggesting that higher fire frequency
and enhanced decomposition offset the potential for higher rates of biomass production. We compile
records from the boreal region and demonstrate that increasing fire frequency is significantly corre-
lated with diminishing long-term carbon accumulation rates, despite large variation in response of
peatlands to fire frequency changes. Therefore, the paleo-record supports that higher fire frequencies
will likely weaken the capacity of some northern peatlands to be net carbon sinks in the future.
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1. Introduction
Peatlands are a type of wetland ecosystem where significant organic matter accumulates under anoxic
and waterlogged conditions. As a result, these ecosystems store a third or more of the soil carbon pool
(Gorham 1991; Yu et al. 2010; Nichols and Peteet 2019). Although these ecosystems have been
net carbon sinks over Holocene timescales, the relative roles of carbon uptake and release remain
uncertain with anthropogenic climate change, particularly in the context of disturbances such as fire
(Gallego-Sala et al. 2018; Loisel et al. 2021).

Fire directly impacts peatland carbon cycling through the combustion of surface vegetation and
peat, which releases carbon dioxide, carbon monoxide, methane, and other hydrocarbons to the
atmosphere (Kasischke and Bruhwiler 2002; Turetsky et al. 2002). In northern regions, peatland
ecosystems can be resilient to fire through rapid vegetation recovery (on the order of decades;
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Wieder et al. 2009; Lukenbach et al. 2015a; Hokanson et al. 2016; Ingram et al. 2019) and the
stabilization of organic matter during combustion (Heinemeyer et al. 2018; Flanagan et al. 2020;
Pellegrini et al. 2021). However, under regional climates that promote high fire frequency and pro-
longed summer drought, northern peatlands can become net sources of carbon, especially when
sites are prone to water table drawdown (Wieder et al. 2009; Ingram et al. 2019). In Canada, fire
frequency and spreading days are already increasing across the boreal biome and this trend is
expected to continue (Kasischke and Turetsky 2006; Wang et al. 2017). These increases are
expected to be especially pronounced in the western boreal region, where high fire frequency and
large burned area annually already occur (Kasischke and Turetsky 2006; Wang et al. 2017; Erni
et al. 2019). Furthermore, summer evapotranspiration is expected to outpace precipitation
increases in northern and central Canada (Tam et al. 2019) and in peatland ecosystems, a stronger
response to changing vapor pressure deficits with warming than adjacent forests means evapora-
tion losses from the boreal region could be underestimated (Helbig et al. 2020). Higher summer
water deficits in boreal Canada will likely result in larger lags in post-fire recovery of peatlands,
expose deeper peats to potential combustion, and make more peatlands vulnerable to fire depend-
ing on local hydrological and climatic factors (Lukenbach et al. 2015b; Turetsky et al. 2015).
Therefore, constraining spatial and temporal variability in peatland response to changing fire
regimes is critical to make impactful fire management decisions (Flannigan et al. 2009; Ingram
et al. 2019) and to quantify the future strength of the peatland carbon sink in the 21st century
and beyond (Loisel et al. 2021; Müller and Joos 2021).

Reconstructing long-term changes in peatland fire regimes of the past allows for baseline data on
long-term fire frequency, which can be linked to past climates and inform future scenarios. In
North America, fire frequency also differed between western and eastern boreal regions across the
Holocene due to spatial variability in paleoclimatic change (Kuhry 1994; Carcaillet and Richard
2000; van Bellen et al. 2012). In the relatively warmer and drier conditions of the Middle Holocene,
western boreal regions in North America experienced higher fire frequency compared to the Late
Holocene (northern Alberta; Kuhry 1994; Zoltai et al. 1998). As a result, peatlands that experienced
fire generally accumulated less carbon, despite warm conditions and longer growing seasons promot-
ing peat growth and higher carbon accumulation rates globally (Kuhry 1994; Loisel et al. 2014). In the
eastern boreal region of North America, higher humidity and fewer incursions of dry Pacific air
masses meant lower Middle Holocene fire frequencies compared to the Late Holocene, and therefore,
fire played less of a role in peatland carbon cycling (northern Quebec; Carcaillet and Richard 2000;
van Bellen et al. 2012). However, responses to regional climatic changes are site specific, as succes-
sional stages and hydrological conditions can prevent fire and mitigate against carbon loss (Camill
et al. 2009; Magnan et al. 2012). Therefore, local factors and how they change through time need to
be constrained to determine whether changes in the fire record at a peatland site are reflective of
regional climatic conditions.

The Hudson Bay Lowlands (HBL) has not been as well studied in terms of impacts of fire on peatland
carbon storage across Holocene timescales, despite fire occurring on the modern landscape (Fig. 1;
Stocks et al. 2002; Coops et al. 2018) and the need to include how fire frequency change in response
to drier relative conditions will impact the carbon sink capacity of this large peatland complex in
the future (Chaudhary et al. 2020; Qiu et al. 2020; McLaughlin and Packalen 2021; Qiu et al. 2022).
The modern fire return interval (FRI) for the HBL region is estimated to be between 400 and
900 years based on historical records of burned area and is more similar to eastern (300–700 years)
than western (100–400 years) boreal fire occurrence (Stocks et al. 2002; Coops et al. 2018). The
burned area pattern across the HBL is, however, not uniform, with more area burned along the
western margin near the Boreal Shield (Fig. 1; Canadian Forest Service 2020; Hall et al. 2020).
The HBL also lies between the western and eastern boreal fire patterns documented across the

Davies et al.

FACETS | 2023 | 8: 1–26 | DOI: 10.1139/facets-2022-0162 2
facetsjournal.com

FA
C

E
T

S 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.f
ac

et
sj

ou
rn

al
.c

om
 b

y 
3.

13
5.

19
4.

25
1 

on
 0

5/
16

/2
4

http://dx.doi.org/10.1139/facets-2022-0162
http://www.facetsjournal.com


Fig. 1. Map and image of the study site and coring localities in the western Hudson Bay Lowlands (HBL), Canada. (A) Map of North America, showing the
boreal zone (after Brandt 2009), the HBL region (after the Hudson Plains Ecozone of Ecological Stratification Working Group1995), and burned area in
Canada from 1986 to 2019 (Canadian Forest Service 2020; Hall et al. 2020). Circles show the locality of lake charcoal records from the Global Charcoal
Database (Power et al. 2010) used to create western and eastern fire history curves found in Fig. 6. Individual site information and references are found in
Tables S1 and S2. Star shows the study site and triangles show lake records found in Fig. 6. (B) Map showing the 1991 fire areal extent (Canadian Forest
Service 2020; Hall et al. 2020) and land cover classes (Government of Ontario 2021). (C) Map showing the coring locations within the study site. Labeled white
lines are elevation, in meters. Imaging from Google Earth. (D) Image of the study site, facing west. Photo credit: M. Davies.
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Holocene in previous studies (e.g., Kuhry 1994; Camill et al. 2009; van Bellen et al. 2012) and could
therefore record a different pattern of fire frequency changes, depending on the location within the
HBL. Therefore, charcoal records are needed to constrain paleo-fire frequency and determine the
response of HBL peatland fire regimes to past climates to support the inclusion of fire into modeled
predictions of future carbon uptake and loss for the region.

Here, we present three paleo-fire records from a site on the western margin of the HBL. The study has
three major goals: (1) to compare the site’s Holocene fire frequency patterns to both compilations of
lake sediment charcoal records and other peatland sites from Canada to investigate how the study
region compares to western and eastern boreal fire frequency patterns through pre-industrial climatic
changes of the Holocene, (2) to investigate the role of fire on carbon accumulation rates and calculate
the potential carbon loss resulting from changing fire frequency at the site, and (3) to determine a
relationship between fire frequency and carbon accumulation by combining our site’s records with
data from other boreal peatland sites outside the HBL region.

2. Methods

2.1. Study region and sampling
The study site is located on the western margin of the HBL, Canada (Fig. 1; the Hudson Plains
Ecozone of the Ecological Stratification Working Group 1995). The study site and surrounding area
are underlain by Paleozoic carbonates, shales, and siltstones and are close to the boundary with the
Archean Superior Province of the Canadian Shield (Ontario Geological Survey 2011). Surficial depos-
its consist of peat and massive to bedded diamicton (Barnett et al. 2013a; 2013b). Land coverage is
almost entirely peatlands and other wetlands, with minor extent of coniferous forest in slight upland
regions (Fig. 1; Government of Ontario 2021). Peat depth is generally shallow in the area immediately
surrounding the study site, ranging from 100 to 150 cm.

The HBL has a humid microthermal Arctic climate (Martini 2006). Mean annual temperature is
−1.3 °C and total annual precipitation is 700 mm at the closest weather station (Lansdowne House;
approximately 120 km from the study site; Government of Canada 2021). The highest and lowest
average monthly temperatures occur in July and January, respectively (17.2 °C and −22.3 °C).
Snowfall >20 cm occurs in 7 months of the year (October to April; 242 cm yr−1 total; Government
of Canada 2021).

The study site was accessed by helicopter and is located within the northwestern portion of an area
that burned in the summer of 1991 (Fig. 1; identified via satellite imagery [Landsat]; Canadian
Forest Service 2020; Hall et al. 2020). The fire was caused by lightning and an estimated 76–100% of
the delineated area in Fig. 1 was burned (420 Ha; Canadian Forest Service 2020; Hall et al. 2020).
The burned portion of the study site is a shrub-rich bog with hummock and hollow microtopography
and is predominantly surrounded by unburned forested bog (Fig. 1). Vegetation consisted of pre-
dominantly Picea mariana, Rhododendron groenlandicum, and Sphagnum and Cladina spp. in both
the burned and unburned portions of the study site. Chamaedaphne calyculata, Maianthemum
trifolium, and Rubus chamaemorus were also present. Eriophorum vaginatum and Larix laricina
were also found infrequently surrounding each of the coring localities. Water table depth and pH were
measured at two points at the site at the time of sampling (hollow and high hummock) and were
42 and 66 cm and 5.0 and 3.6, respectively. Three cores were collected in August 2018 at the study site,
“ROF-F01,” “ROF-F02,” and “ROF-F03” (184 m asl; Fig. 1; Table 1). The cores were taken in differ-
ent regions of the site (burned-edge, burned-center, unburned) and in different microtopography
(low hummock, hollow, high hummock) to capture some of the spatial variability (Table 1). Coring
was done using a 1-m Jeglum corer for the first 100 cm; subsequent drives were collected with a
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Table 1. Summary information, Holocene fire patterns, and carbon release and storage for ROF-F01, ROF-F02, and ROF-F03. Center and edge refer to the
locality within the 1991 burned area of the study site. Potential carbon loss is estimated by assuming 1430 g C m−2·yr−1·fire−1 after Balshi et al. (2009) for the
Hudson Plains. FRI: fire return interval; freq.: frequency; LORCA: long-term rates of carbon accumulation, equal to the total carbon mass divided by the basal
age; SNI: signal-to-noise index.

Core ROF-F01 ROF-F02 ROF-F03

A. Site information

Latitude (°N) 52.4967 52.4968 52.4960

Longitude (°W) 86.2336 86.2340 86.2340

Microtopography at core location Low hummock Hollow High hummock

Location description Burned-edge Unburned Burned-center

Basal peat depth (cm) 91 130 135

Basal age (cal yr BP) 6500 5600 7200

B. CharAnalysis inputs and Holocene fire patterns

Core interval A B — —

Age interval 0–440 2900–6500 — —

Charcoal median sampling resolution (yrs) 17 73 55 38

Smoothing window (yrs) 500 2200 1700 1200

Threshold Global Local Local local

Median SNI 45.6 13.0 12.9 6.5

Samples SNI>3 — 51/51 104/104 167/196

Number of peaks 2 3 5 9

Number of fires 6 5 9

Number of peaks with smoldering evidence 4 3 3

Number of FRI 4 4 8

Mean Holocene FRI (yr·fire−1) 930 990 907

Mean Holocene fire freq. (# 1000 yr−1) 1.1 1.0 1.1

C. Mean peat properties and net carbon accumulation and release estimates

Mean C content (± SD; %) 46± 4 44± 3 43± 4

Mean N content (± SD; %) 0.8± 0.3 0.7± 0.2 1.0± 0.3

Mean C:N ratio (± SD) 64± 20 69± 19 49± 14

Mean carbon density (± SD; kg C m−3) 57± 32 47± 23 55± 22

Total carbon mass (kg C m−2) 53 60 76

LORCA (g C m−2·yr−1) 8.1 10.8 10.3

Holocene carbon loss from fire (kg C m−2) 10 8 11
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1 m × 15 cm diameter Russian peat corer. Basal sediments underneath the peat at each coring locality
consisted of a clay matrix and grains of silt and sand. Cores were stored at 4 °C prior to analysis at the
University of Toronto, Canada.

2.2. Chronology and peat properties
The approach for sampling for chronology and peat properties was the same for each coring locality,
with exceptions noted below. Ages were assigned to each core using Bayesian age-depth modeling in
the “rbacon” package for R (Blaauw and Christen 2011). Each model was developed using radiocar-
bon dates on aboveground plant material (Table 2) and the surface age (−68 cal yr BP). A total of
seven to nine radiocarbon dates per core were measured to obtain a resolution of roughly one date
per 1000 years. Cores were initially dated at 45 cm, 95 cm, and the base of the core, and additional
dates between these were measured to obtain the targeted resolution. Conventional 14C ages were
calibrated to “calendar” (cal) years using the IntCal20 calibration curve (Reimer et al. 2020).
Radiocarbon ages were measured at the Lalonde AMS Laboratory (Ottawa, Canada). For the coring
locality adjacent to the burned area (ROF-F02), where there was no suspected disturbance of the
upper peat column from the most recent known fire, Pb-210 activities from bulk peat samples in
the upper 50 cm were also used in the Bayesian age-depth model for the location using the “plum”
package for R (Table 3 and Fig. S1; Blaauw et al. 2021). Pb-210 samples were measured at the Flett
Research Laboratory using alpha spectrometry (Winnipeg, Canada). Select samples across the upper
50 cm of the core were measured to obtain sufficient data to determine exponential decrease in
Pb-210 activity to background levels (Table 3 and Fig. S1). Because the coring locality had Pb-210
ages, radiocarbon ages above 45 cm were not measured. We placed a hiatus in a record when the aver-
age accumulation rate between radiocarbon ages was much lower than our prior accumulation rate in
our Bayesian age-depth model (i.e., << 50 years·cm−1; threshold of 5 × lower = 250 years cm−1).

To estimate long-term and apparent carbon accumulation rates (aCARs), carbon density, and total
carbon mass, and to investigate peat properties (carbon and nitrogen content), dry bulk density
measurements were performed at a 1 cm resolution to match the highest resolution of the charcoal
record. A total of 2–28 cm3 was taken from each 1 cm interval to obtain >0.5 g of the dried sample
for carbon and nitrogen analysis. Each sample was dried to a constant mass overnight at 60 °C and
then ground to a fine powder using a MM200 Retch ball mill. Carbon and nitrogen analysis was
performed at the Radiochronology Lab at the Centre for Northern Studies, Université Laval
(Québec City, Canada), where 70–100 mg per sample was analyzed using a Leco CHN628 analyzer.
Standards analyzed alongside samples were within 0.6% relative standard deviation for both carbon
and nitrogen (EDTA Lot1061 and 502-309 soil standard). Carbon accumulation rates were calculated
using two methods, aCARs and long-term rates of carbon accumulation (LORCAs). LORCAs
represent the net carbon storage at the site through its averaged accumulation history, while aCARs
are time-stepped estimates approximating net carbon uptake at a given time (Young et al. 2021).
aCARs were calculated by multiplying the dry bulk density (in g cm−3) by the accumulation rate
(cm yr−1) and the proportion of carbon in each sample (Chambers et al. 2010). Cumulative carbon
mass was determined by summing the carbon densities (in kg C m−3) multiplied by the thickness
(in m) for each sample. The cumulative carbon mass (in kg C m−2) was then used to calculate
LORCA for each coring locality by dividing it by the basal age.

2.3. Charcoal and peat type analysis
To assess fire frequency through the Holocene, subsamples of 2 cm3 of peat were taken contiguously
along each core at a 1–2 cm interval. Each sample was placed in a 5% KOH treatment overnight
(>16 h) and then sieved to >150 μm (after Mooney and Tinner 2010; van Bellen et al. 2012). The
entire sample was counted using a stereomicroscope with a gridded Petri dish at 32 ×magnification.

Davies et al.

FACETS | 2023 | 8: 1–26 | DOI: 10.1139/facets-2022-0162 6
facetsjournal.com

FA
C

E
T

S 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.f
ac

et
sj

ou
rn

al
.c

om
 b

y 
3.

13
5.

19
4.

25
1 

on
 0

5/
16

/2
4

http://dx.doi.org/10.1139/facets-2022-0162
http://www.facetsjournal.com


Table 2. AMS radiocarbon ages for ROF-F01, ROF-F02, and ROF-F03, western Hudson Bay Lowlands, Canada.
Individual age calibrations in this table were performed using OxCal version 4.4 (Bronk Ramsey 2009).

Depth (cm)
Radiocarbon age

(14C yr. BP) Material
Cal BP

(2σ range) Lab ID

A. ROF-F01

15–16 >modern F14C:
1.7387± 0.0058

Sphagnum stems and leaves 1963–1966 (95.4%) AD UOC-14867

35–36 79± 26 Sphagnum stems and leaves
Conifer needles

257–224 (26.5%)
140–32 (69.0%)

UOC-14868

25–26 154± 27 Sphagnum stems and leaves 284–240 (16.3%)
233–167 (28.7%)
155–128 (9.9%)

119–57 (21.1%)>45 (19.4%)

UOC-13269

45–46 158± 25 Sphagnum stems and leaves 285–246 (16.3%)
230–166 (32.6%)
157–133 (9.8%)
118–59 (20.4%)
>44 (20.4%)

UOC-13270

55–56 2929± 27 Sphagnum stems and leaves 3167–2994 (93.1%)
2980–2968 (2.3%)

UOC-14869

65–66 2625± 29 Sphagnum stems and leaves 2776–2723 (95.4%) UOC-13271

72–73 4142± 27 Sphagnum stems and leaves 4824–4743 (30.8%)
4736–4572 (64.2%)
4540–4537 (0.4%)

UOC-14870

80–81 4755± 31 Sphagnum stems and leaves 5584–5457 (83.9%)
5378–5330 (11.6%)

UOC-13272

91–92 5719±30 Sphagnum stems and leaves
Ligneous fragments

6266–6581 (10.4%)
6569 (80.7%)

6425–6407 (4.4%)

UOC-13273

B. ROF-F02

45–46 302± 28 Sphagnum stems and leaves 455–348 (70.5%)
340–296 (24.9%)

UOC-13274

70–71 632± 27 Sphagnum stems and leaves 659–533(95.4%) UOC-13275

80–81 1737± 27 Sphagnum stems and leaves 1703–1549 (95.4%) UOC-14871

95–96 2616± 29 Sphagnum stems and leaves 2771–2721 (95.4%) UOC-13276

115–116 4442± 27 Sphagnum stems and leaves
Conifer needles

Brown moss stems

5280–5166 (35.2%)
5137–5100 (7.5%)
5081–4958 (47.8%)
4932–4883 (5.0%)

UOC-14872

120–121 4320± 29 Sphagnum stems and leaves
Conifer needles

4960–4840 (95.4%) UOC-13277

128–129 4830± 33 Sphagnum stems and leaves 5601–5476 (95.4%) UOC-13278

C. ROF-F03

25–26 88± 26 Sphagnum stems/leaves 260–222 (26%)
142–30(69.4%)

UOC-14873

(continued )
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Charcoal fragments were identified by referencing New et al. (2016) (Fig. S2). Peat type was assigned
to each sample based on the main vegetation groups observed. Samples were assigned to one of three
groups: Sphagnum-dominated peat, mixed ligneous and Sphagnum peat, and mixed ligneous,
Sphagnum, and herbaceous peat. To be assigned a group, each of the various plant macrofossil
components was at least 25% of the plant macrofossils present in the sample.

2.4. Fire identification
Charcoal counts were analyzed to identify fire peaks using “CharAnalysis” (Higuera 2009). Each core
was rescaled to the median sample resolution prior to analysis to reduce bias from a changing vertical
accretion rate in the site’s accumulation history (Table 1). If a core had a suspected hiatus, it was split
into two components (i.e., above and below the boundary; Section A and B; Table 1). The rescaled
charcoal accumulation rate (CHAR) was split into three components: background (Cback), noise
(Cnoise), and fire (Cfire). The background component is attributed to changes in long-term regional
charcoal production and transport, post-fire deposition, and the potential movement of charcoal
within the acrotelm (Higuera et al. 2009; van Bellen et al. 2012). Both the noise and fire components
are part of the peaks (Cpeak) identified above Cback, where Cnoise is attributed to random variability due
to external inputs, and the Cfire represents charcoal produced due to local burning at or near the site
(Gavin et al. 2006; Higuera et al. 2010). We defined Cpeak as a residual, assuming that there is an addi-
tive relationship. We identified Cback using LOWESS smoothing (robust to outliers) and defined the
smoothing window to have >30 samples per window (Higuera et al. 2010). We used a local threshold
to separate Cfire and Cnoise to account for variation in the record with decomposition when the core
intervals analyzed were greater than the smoothing window (Table 1; Higuera et al. 2010). Cfire was
considered to represent a local peat fire when it was above the 99% threshold of the Cnoise distribution
identified using Gaussian mixture models (Gavin et al. 2006). We utilized a signal-to-noise index

Table 2. (concluded )

Depth (cm)
Radiocarbon age

(14C yr. BP) Material
Cal BP

(2σ range) Lab ID

45–46 290± 26 Sphagnum stems/leaves 445–354 (63.7%)
334–290 (31.7%)

UOC-13280

60–61 1468± 28 Sphagnum stems/leaves 1387–1304 (95.4%) UOC-14874

70–71 1769± 26 Sphagnum stems/
leaves+ conifer needles

1719–1588 (95.4%) UOC-13281

80–81 2439± 25 Ligneous fragments
conifer needles

Sphagnum stems/leaves

2699–2635 (21.4%)
2616–2587 (8.9%)
2537–2529 (0.8%)
2520–2357 (64.3%)

UOC-14875

95–96 2895± 26 Conifer needles/Sphagnum
stems/leaves

3152–3090 (13.0%)
3082–2952 (82.5%)

UOC-13281

115–116 5041± 27 Ligneous fragments/
Sphagnum stems and leaves

conifer needles

5900–5716 (94.6%)
5671–5665 (0.9%)

UOC-14876

125–126 5815± 34 Sphagnum stems/leaves
ligneous fragments

6730–6699 (5.7%)
6678–6499 (89.7%)

UOC-13282

134–135 6277± 36 Sphagnum stems/leaves
ligneous fragments

7280–7155 (88.0%)
7118–7066 (5.4%)
7049–7024 (2.0%)

UOC-13283
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(SNI) to evaluate each of the peaks in our record (after Kelly et al. 2011). A SNI greater than 3 for a
given peak was the threshold to consider a peak well separated from Cnoise. To separate peaks that
directly impacted the peat column and those that impacted vegetation inputs, we used C:N ratio,
as N is enriched relative to C during peat smoldering (Zaccone et al. 2014).

2.5. Local and regional fire frequency and carbon accumulation
Relationships between FRI and aCAR through the Holocene were investigated using the combined
datasets of the three coring localities. FRI and aCAR values were assigned to one of the following
intervals: 0–500 cal yr BP, 500–4200 cal yr BP, and 4200–7200 cal yr BP. We selected 500 cal yr BP
as a boundary because aCARs shift to much higher values associated with acrotelm peat that cannot
be directly compared to deeper values (Young et al. 2019). Further, there could be potentially higher
amounts of charcoal movement through fluctuating water tables in acrotelm peat. Therefore, these
values were omitted from the statistical analysis of the difference between aCAR values through time
and their relation to changing FRIs. The boundary between the other two intervals is the stage
boundary between the Middle and Late Holocene (4200 cal yr BP; Walker et al. 2019). For FRIs that
overlapped the boundaries, they were assigned to the interval where the majority of the FRI occurred.
A Mann–Whitney U test was performed to test differences between aCARs between the Middle
(4200–7400 cal yr BP; N = 74, 3 coring locations) and Late Holocene (500–4200 cal yr BP N = 123,
3 coring locations). This test was selected because the aCAR data are non-normal (Shapiro–Wilk,
p < 0.05). Statistical tests were not performed on the FRI data, as sample size for each interval was

Table 3. Pb-210 activity for ROF-F02, western Hudson Bay Lowlands, Canada. Lower three samples were used
for supported activity calculations. SD: standard deviation; DPM: disintegrations per minute; 0.06 DPM·g−1 = 1
Becquerel (Bq)·kg−1.

Interval
(cm)

210Pb total
activity (DPM·g−1)

210Pb total activity
SD (DPM·g−1)

Bulk density
(g cm−3)

0–1 21.27 0.54 0.036

2–3 33.02 0.75 0.035

3–4 31.81 0.63 0.074

5–6 25.32 0.57 0.068

6–7 23.74 0.52 0.065

7–8 24.23 0.58 0.046

9–10 11.53 0.43 0.054

10–11 6.89 0.32 0.061

12–13 4.09 0.24 0.055

14–15 3.04 0.20 0.046

16–17 2.46 0.20 0.054

24–25 2.20 0.19 0.064

29–30 1.57 0.15 0.075

34–35 0.89 0.10 0.055

39–40 0.25 0.07 0.070

44–45 0.01 0.04 0.080

49–50 0.06 0.04 0.085

Davies et al.

FACETS | 2023 | 8: 1–26 | DOI: 10.1139/facets-2022-0162 9
facetsjournal.com

FA
C

E
T

S 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.f
ac

et
sj

ou
rn

al
.c

om
 b

y 
3.

13
5.

19
4.

25
1 

on
 0

5/
16

/2
4

http://dx.doi.org/10.1139/facets-2022-0162
http://www.facetsjournal.com


low, even in the combined record. Median fire frequency values were used in the comparison between
time periods to minimize the influence of outliers. We estimated carbon release for the Middle and
Late Holocene time bins (in kg C m−2) by multiplying the median fire frequency (1/FRI; in fires·yr−1)
and time bin interval (yr) by the annual average emission per unit of burned area within the Hudson
Plains (1430 g C m−2·fire−1; Balshi et al. 2009). This annual average emission value was selected as it is
a modeled estimate for the entire region and also lies conservatively within estimates of carbon loss
from fire in boreal peatlands, which is expected in more humid regional climates such as the HBL
where fire is more likely restricted to aboveground biomass (0–6000 g C m−2·fire−1; Zoltai et al.
1998; Turetsky and Wieder 2001; Lukenbach et al. 2015b; Wilkinson et al. 2018).

Holocene-scale fire frequencies were used to place our study region in the wider context of the
relationship between fire frequency and LORCAs in peatlands across the boreal region.
A Holocene-scale fire frequency (in fires 1000·yr−1) was calculated for each coring location by
dividing the total number of fire peaks by the basal age. A Holocene FRI was then calculated as the
inverse of fire frequency. We estimated carbon release at each coring location for the entire record
(in kg C m−2) by multiplying the median fire frequency (1/FRI; in fires·yr−1) and the core basal age
(yr) by the annual average emission per unit of burned area within the Hudson Plains as above
(1430 g C m−2; Balshi et al. 2009). To compare our study site to other boreal regions, we compiled fire
frequency and LORCA data from other boreal peatlands (Kuhry 1994; Turunen et al. 2001; van Bellen
et al. 2012; Magnan et al. 2020) and investigated their relationship using linear regression analysis.
A linear relationship was explored as this was previously found to be significant (Kuhry 1994;
Moore and Robinson 2000). Fire frequency was square-root transformed prior to linear regression
analysis to normalize the dataset (Shapiro–Wilk, p> 0.05).

We utilized the “Global Charcoal Database” to create compilations of eastern and western boreal fire
histories to compare the site investigated in this study. Sites within the boreal region and with radio-
carbon ages (Fig. 1; boreal region defined after Levavasseur et al. 2012) were extracted and analyzed
using the “paleofire” package in R (Blarquez et al. 2014). The boundary of 82 °W was used to separate
western and eastern boreal sites, based on paleoclimate data from sites in western Ontario (Lake 239;
Fig. 1; Moos and Cumming 2012). Each record was transformed prior to compilation by scaling the
records between 0 and 1, Box-Cox normalization, and converting to a z-score with the base period
set to the last 8000 years (Power et al. 2010). All sites were lake sediment records, which provide a
more regional signal than peat charcoal records, and all had influx data. The composite curve for each
region was created using the “pfComposite” function in the “paleofire” package (Blarquez et al. 2014).
The composite was the mean z-score in 500 year bins, with bootstrap resampling (1000 iterations).
We selected 500 year bins to match the lowest sample resolution in the included studies (# of samples
divided by the length of record; see Tables S1 and S2).

3. Results

3.1. Chronology, peat properties, carbon accumulation rates
Peat accumulation initiated at all three coring localities by 5600 cal yr BP or earlier (Table 1; Fig. 2).
All three coring locations are interpreted to have rapidly transitioned to either treed poor fen or bog
conditions after initiation, with the presence of significant Sphagnum moss and ligneous (woody)
plant remains throughout the cores, including the consistent occurrence of conifer needles (Fig. 3,
Vitt 2006; Loisel et al. 2014). Rapid succession (i.e., from marsh and/or rich fen conditions or from
forest to wetland through paludification) can occur in relatively drier localities controlled by local
topography and drainage (Klinger and Short 1996; Glaser et al. 2004). Further, paludification can be
accelerated by fire, and since there are high charcoal concentrations at the base of two cores, fire at
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Fig. 2. Bayesian age-depth model outputs for ROF-F01, ROF-F02, and ROF-F03, western Hudson Bay Lowlands,
Canada (Blaauw and Christen 2011; Blaauw et al. 2021). Black line is the weighted mean age and the darker the
greyscale within the 95% confidence interval, the more likely the age, based on Markov Chain Monte Carlo
(MCMC) iterations. Dashed lines are the 95% confidence intervals. 210Pb activities and their error are plotted
for ROF-F02 in blue (B). Vertical accretion rates (VARs) labeled above each age-depth plot are the mean for the
interval between the corresponding radiocarbon ages. acc. = accumulation; mem. = memory.
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the site in this study may have also promoted terrestrial to wetland succession variably across the
study region and explain the large spread in basal ages (Simard et al. 2007; Magnan et al. 2018).

At all three coring localities, peat properties (BD and C:N ratio) generally vary with either peat type and
(or) charcoal concentration, while aCARs are predominantly related to shifts in vertical accretion rate in
the age-depth model (Figs. 2 and 3). Further, shifts in broad peat types do not correspond to changes in
charcoal concentrations, suggesting that the Holocene fire records for the study region are reflective of
changes in regional climatic conditions and not vegetation change (Fig. 3). At ROF-F01 (edge of burned
area), shifts in C:N ratio broadly correspond to shifts in peat type. A hiatus was placed in the record at
51 cm, between the two radiocarbon ages where the deposition time was greater than 400 yr·cm−1

(Fig. 2). The highest nitrogen content is above the hiatus in the record, reaching 1.4–1.6 % between
180 and 400 cal yr BP (Fig. 3). High nitrogen content and the corresponding low C:N ratio in relation
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Hudson Bay Lowlands, Canada. Age is the primary axis. BD: bulk density; aCAR: apparent carbon accumulation
rate. Fire peaks correspond to peaks identified by CharAnalysis as shown in Fig. 4 with horizontal bars linking fire
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to the hiatus indicate peat smoldering (Zaccone et al. 2014) and support the placement of the hiatus. At
ROF-F02 (adjacent to burned area), C:N ratios are more variable, along with peat type (Fig. 3). The
highest nitrogen values at the coring location correspond to the highest charcoal concentration in the
record, also suggesting that N was enriched with peat smoldering (Fig. 3; Zaccone et al. 2014). At
ROF-F03 (center of burned area), the lower portion of the record (>4000 cal yr BP) has higher peat bulk
density that corresponds to lower C and N content and relatively high charcoal concentration (Fig. 3).
Unlike the other two coring locations, herbaceous material as a major component of the peat type is
restricted to lower portion of the core (>5800 cal yr BP). Further, Sphagnum peat predominates in the
uppermost portion (above 65 cm or 1500 cal yr BP). High nitrogen content occurs between 2300 and
3300 cal yr BP, reaching values of up to 1.9% (Fig. 3). A fire peak lies within this interval, but charcoal
concentration is low (Fig. 3). All cores have high aCARs associated with high vertical accretion rates in
the uppermost acrotelm peat (Figs. 2 and 3).

Differences between LORCA, carbon density, and total carbon mass at the coring locations
correspond to differences in basal age and depth, microtopography, and vegetation cover (Table 1).
Mean carbon density ranged from 47 to 57 kg C m−3 for the three coring localities, with higher carbon
densities in the shrub-rich portions of the burned area with older basal ages and that were collected
from hummocks (i.e., ROF-F01 and ROF-F03). Total carbon mass of the peat profiles was the highest
at the oldest coring locality (ROF-F03) and lowest at the site with the shallowest peat depth
(ROF-F01). LORCAs for the sites were between 8 and 11 g C m−2·yr−1, with the highest occurring
in the treed core locality in a hollow (ROF-F02; Table 1).

3.2. Charcoal accumulation rates, fire frequency, and potential
carbon loss
The rescaled CHARs (median resolution) range from 0 to 8 pieces cm−2·yr−1 for all coring locations
(Fig. 4). A total of five to nine fire peaks per core were identified. All peaks across the three cores
are well separated from Cnoise, since the median SNI was>3 globally, locally for more than 85% of
the samples in each core, and for each significant peak (Table 1; Kelly et al. 2011). One fire peak
was also placed at the top of the hiatus of ROF-F01 independent of the peak determination in
CharAnalysis, as we interpret this hiatus to be caused by peat combustion. The upper boundary of
the hiatus also corresponds to fire peaks in the two other records when accounting for age error
(i.e., within the 95% CI; Fig. 4). At each coring locality, 3–4 peaks were associated with a shift in C:
N ratio that was lower than the core mean, suggesting peat smoldering occurred (Table 1 and
Fig. 3). Further, increased CHARs are recorded in the uppermost portion of the record at every coring
locality, but fire peaks are only significant for the cores within the burned area (i.e., ROF-F01 and
ROF-F03; Figs. 1 and 4). Only the age of the uppermost significant peak at ROF-F03 matches the year
burned (1991). However, the cores within the burned area do not have Pb-210 ages to constrain very
recent vertical accretion rates, as we did not perform Pb-210 dating where disturbance from the most
recent fire occurred (Fig. 2). The age range surrounding the increased CHARs that were not signifi-
cant at the unburned coring locality (ROF-F02) also contains the year burned (1991) and is con-
strained by Pb-210 ages (Fig. 4). Holocene-scale FRIs (0–8000 cal yr BP) and their corresponding
fire frequencies were similar for the three cores, ranging from 907 to 990 years and 1.0 to 1.1 fires
1000·yr−1, respectively (Table 1). As a result of fire at the site, we estimate that 8–12 kg C m−2 was lost
to the atmosphere over the site’s accumulation history (Table 1).

The fire records at the coring localities generally record similar timing in fire peaks, with at least 70%
of the fire peaks overlapping in age with at least one other peak (Fig. 4). However, some peaks are
independent despite the localities being < 100 m apart from each other, even when age error is
considered (Figs. 1 and 4). Local-scale variability in charcoal records has been demonstrated on
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replicate and site-level records in other peatlands, as well as at various charcoal size fractions, sug-
gesting that peatland charcoal records are highly localized to the core location (e.g., van Bellen et al.
2012; Cui et al. 2020; Beaulne et al. 2021). However, the FRIs through the Holocene for each of the
core localities fit within the upper end of modern estimates of FRIs for the HBL (200–1000 years;
Stocks et al. 2002; Boulanger et al. 2014; Coops et al. 2018). Therefore, the paleo-fire return intervals
recorded at the site match regional expectations.

Overall, more fires occurred in the Middle Holocene in comparison to the Late Holocene. When
individual FRIs from across the three coring locations were pooled to investigate Middle
(4200–7200 cal yr BP) and Late Holocene (500–4200 cal yr BP) differences, the median FRI for the
Middle Holocene (912 years) was lower than the Late Holocene (1650 years), corresponding to a
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higher median fire frequency (1.1 vs. 0.6 fires 1000·yr−1; Figs. 5 and 6) and subsequent carbon loss
(6 kg C m−2 vs. 3 kg C m−2) across the interval. Fire frequency patterns at the site match the trend
in the western boreal compilation, where there were higher CHARs within lake records during the
Middle Holocene, signaling more fire on the landscape during that time (Fig. 6).

3.3. Relationship between fire frequency and carbon accumulation
rates
The relationship between changing fire frequencies and peatland carbon accumulation differed when
investigating at a local vs. regional scale. aCARs were not significantly different between the Middle
and Late Holocene at the study site in the combined core dataset (W = 4352, p = 0.609; Fig. 5), despite
differing median fire frequency between the time bins. However, when LORCA and fire frequency
from this study are plotted with other boreal sites that represent a larger dataset across a larger fire
frequency and moisture gradient, there is a significant relationship, with decreasing Holocene-scale
carbon accumulation rates with increasing fire frequency (Fig. 7).

4. Discussion

4.1. Relationships between fire frequency and Holocene climate
Median fire frequency recorded from the study region is related to differing hydroclimatic conditions
between the Middle and Late Holocene. Higher median fire frequency in the Middle Holocene corre-
sponds to warmer conditions with minimal precipitation change in the HBL (<0.5 °C; Fig. 6; pollen-
inferred estimates; Hargan et al. 2020), which has been linked to relatively drier conditions in testate
amoeba records because of higher evaporative demand (Fig. 6; Davies et al. 2021). Further, the
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pattern at the study site is also comparable to Lake 239 record in northwestern Ontario, where despite
higher precipitation within the Middle Holocene, higher evaporative demand and likely more instanc-
es of prolonged summer drought led to higher fire frequency surrounding the site
(12.5 fires 1000·yr−1 in the Middle Holocene and <5 fires 1000 yr−1 in the Late Holocene; Moos
and Cumming 2011; 2012; Fig. 6). Because a difference in median fire frequency is recorded between
these time periods at the study region, fire frequency is apparently impacted by relatively small
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changes in temperature and evapotranspiration budgets and therefore supports that some HBL
peatlands may be increasingly vulnerable to fire because of anthropogenic climate change.

Different fire frequency patterns between the site and the eastern boreal compilation support that
regional factors are causing alternate fire regimes. In the Quebec region, the Middle Holocene was
characterized by higher relative humidity associated with less frequent intrusion of cool and dry
Pacific air masses (Edwards et al. 1996). Less frequent intrusions meant there were fewer periods of
summer drought that could promote fire (Carcaillet and Richard 2000). Since the western HBL has
a higher median fire frequency in the Middle Holocene, cool and dry Pacific air masses likely still
influenced drought in the region during this time and support that continental air mass movement
changes and drought frequency are critical to constrain to predict peatland fire frequency in the future
(e.g., Marcisz et al. 2017). However, fire frequency is still comparatively much lower than modern and
Holocene fire values for peatlands in western Canadian boreal region, attesting to the site’s location at
the transition from a continental to more humid climate (i.e., western boreal fire frequency in peat-
lands is 2–8 fires 1000·yr−1; Kuhry 1994; Zoltai et al. 1998; Wieder et al. 2009).

FRIs shorten over the last 500 years and are smaller than both the Middle and Late Holocene intervals
(Figs. 6 and 7), which we attribute to recent drying as well as decomposition and acrotelm processes.
Some northern peatlands have been drying over the last two centuries with climatic and land use
changes and are expected to dry out further with anthropogenic climate change and therefore pro-
mote increased fire frequency (Turetsky et al. 2015; Swindles et al. 2019). Although these factors
may in part explain the trends in fire frequency at the site, the median fire frequency recorded from
the pooled dataset in the last 500 years (3.3 fires 1000·yr−1) is over three times higher than the warmer
Middle Holocene value, suggesting that factors other than climate are needed to explain large
differences. Decomposition can cause the broadening of charcoal peaks and may disguise smaller

LORCA = -4.8*sqrt(Fire Frequency) + 22.1
F(1,34)= 9.66; p = 0.004
r2 = 0.22

Western Canada (Kuhry, 1994)
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Fig. 7. Relationship between peatland fire frequency and Holocene-scale carbon accumulation rate (LORCA)
from North American and Siberian boreal sites. Dashed line is the residual standard error of the linear regression
model (± 5.6 g C m−2·yr −1).
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peaks as a result (Camill et al. 2009). Further, fire severity may impact whether charcoal layers are
formed or not in the peat column (Turetsky et al. 2004). Therefore, our Middle Holocene estimate
could be a conservative estimate of fire frequency in this interval. Charcoal fragments could also
potentially move in the acrotelm, which may cause artificial peaks and increase the apparent number
of fires (Turetsky et al. 2004). However, we aimed to minimize this through determining background
charcoal in CharAnalysis (van Bellen et al. 2012). Overall, due to these processes, the acrotelm and
catotelm fire frequencies are challenging to compare.

4.2. Fire frequency impacts on peatland carbon cycling
aCARs at the site were not significantly different between the Middle and Late Holocene and do not
correspond to changes in median fire frequency, suggesting that carbon losses may have been offset
by other local factors (Fig. 5). The Middle Holocene has also been linked to higher biomass
production with longer growing degree days above zero in northern peatlands (Yu et al. 2010).
Higher vegetation inputs into the site between fires may have therefore compensated for some of
the loss. Sphagnum macrofossils are also consistently found throughout each core, suggesting rapid
recovery from fire (Fig. 3, Magnan et al. 2012). Further, charcoal peaks are not always associated with
evidence of peat smoldering (Fig. 3 and Table 1). Therefore, Sphagnum moss was able to protect the
deeper soils by preventing water loss in most cases (Benscoter and Wieder 2003; Benscoter et al.
2011). Fire may have also offset carbon losses at the site by stabilizing a fraction of the organic matter
through charcoal production (Heinemeyer et al. 2018; Flanagan et al. 2020; Pellegrini et al. 2021).
Chemical alteration of peat at the site during fire is supported by the low C:N ratios and high nitrogen
content that are linked to some of the charcoal peaks in the cores (Zaccone et al. 2014). Therefore, the
records in this study demonstrate the complex interactions between fire and carbon storage that are
dependent on local factors, including whether fire directly or indirectly impacts the peat column.

Fire frequency and carbon accumulation relationships vary at local scales. This variation implies that
while fire can play a role in removing carbon inputs, regional compilations are clearly needed to
predict the relative role of fire on the global peatland carbon balance. Within local studies in boreal
peatlands, both positive and negative relationships between fire frequency and LORCAs have been
demonstrated (Kuhry 1994; Camill et al. 2009; van Bellen et al. 2012; Magnan et al. 2020) and,
depending on the region, local factors including hydrological conditions (van Bellen et al. 2012),
vegetation composition (Camill et al. 2009), and decomposition prevention (Heinemeyer et al.
2018) compensated for any impacts on carbon accumulation rates. When sites are pooled from boreal
regions that represent a larger gradient in fire frequency and moisture balance conditions seen across
the Holocene than at an individual site, we demonstrate that there is a significant negative relation-
ship between fire frequency and LORCA, with considerable variation (Fig. 7). The variation supports
that some peatlands will be more resilient to carbon loss from fire than others (Ingram et al. 2019).
Resilience has been shown to come from vegetation composition (i.e., Sphagnum moss abundance
and recovery; Magnan et al. 2012; Kettridge et al. 2015) and hydrogeological setting (Hokanson et al.
2016; Ingram et al. 2019). At our study site, LORCA values are lower than predicted based on the sites
fire frequency in the linear regression model (Fig. 7). Further, the estimated total carbon loss from
each coring locality does not fully explain lower LORCAs at the site from median HBL values (18.3
g C m−2·yr−1; Packalen and Finkelstein 2014; Table 1). Therefore, the dry conditions at the site
needed for higher tree cover also likely contributed further to lowering carbon stocks (Magnan et al.
2020; Beaulne et al. 2021). Therefore, as expected, sites with dry conditions and high tree and shrub
cover are more vulnerable to fire and will likely have an even more diminished long-term carbon
storage if more frequent fire occurs.

Although only subtle changes in median fire frequency were recorded at the site with modest mean
summer temperature changes within the Middle Holocene (Fig. 6; Hargan et al. 2020), these changes
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also have implications for carbon release across the Holocene. When comparing the median Middle
and Late Holocene FRI of the study site, emissions were potentially doubled per unit area between
the Middle and Late Holocene, despite minimal annual temperature increases (Hargan et al. 2020).
Therefore, characterizing the FRI in HBL peatlands has the potential to constrain the atmospheric
inputs from fire on a regional and global scale through the Holocene. However, continued work
capturing spatial variability in peatland fire frequency changes across the region is needed to support
scaling fluxes from fire (Loisel et al. 2017).

5. Conclusions
Median fire frequency for our study site on the western HBL margin was higher in the Middle
Holocene despite only modest (<0.5 °C) changes in mean summer temperatures (Hargan et al.
2020). Subsequently, the potential carbon released during the Middle Holocene was potentially 50%
higher than in the Late Holocene at the site. The record matches western Canadian boreal fire
frequency pattern and indicates that length of summer drought is an important distinction between
western and eastern boreal zones in North America. A lower overall fire frequency across the
Holocene at the site compared to western Canadian boreal sites, however, supports that the HBL
region lies between the continental and humid climate regimes (Zoltai et al. 1998). We demonstrate
that local factors can diminish impacts of fire on shifting aCARs, but when sites across the boreal
region globally are combined and a larger moisture and fire frequency gradient is investigated, fire
frequency can explain some of the variation in LORCAs over the Holocene. Therefore, with future
warming, some peatlands of the HBL may be more vulnerable to fire and, as a result, may weaken
their ability to be net carbon sinks.
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