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Abstract
Improving our understanding of how the ocean absorbs carbon dioxide is critical to climate change mitigation efforts. We,

a group of early career ocean professionals working in Canada, summarize current research and identify steps forward to
improve our understanding of the marine carbon sink in Canadian national and offshore waters. We have compiled an ex-
tensive collection of reported surface ocean air–sea carbon dioxide exchange values within each of Canada’s three adjacent
ocean basins. We review the current understanding of air–sea carbon fluxes and identify major challenges limiting our un-
derstanding in the Pacific, the Arctic, and the Atlantic Ocean. We focus on ways of reducing uncertainty to inform Canada’s
carbon stocktake, establish baselines for marine carbon dioxide removal projects, and support efforts to mitigate and adapt
to ocean acidification. Future directions recommended by this group include investing in maturing and building capacity
in the use of marine carbon sensors, improving ocean biogeochemical models fit-for-purpose in regional and ocean carbon
dioxide removal applications, creating transparent and robust monitoring, verification, and reporting protocols for marine
carbon dioxide removal, tailoring community-specific approaches to co-generate knowledge with First Nations, and advancing
training opportunities for early career ocean professionals in marine carbon science and technology.
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Introduction
Increases in greenhouse gas emissions due to human

activity are driving adverse changes to human systems and
ecosystems, including increases in biodiversity loss, food and
water insecurity, and extreme weather events (IPCC 2023).
To mitigate climate change-related risks, Canada must ad-
here to national and international greenhouse gas emission
reduction strategies and environmental policies. Doing so
requires careful accounting of Canada’s carbon stocks and
fluxes. To this end, we must improve our understanding of
the ocean’s role in the global carbon cycle. Understanding
the variability of the marine carbon sink can better inform
future scientific observational programs, climate forecasting,
and net-zero emission pathways (Environment and Climate
Change Canada 2020). Current estimates suggest that the
global ocean has taken up approximately one quarter of
the total anthropogenic (i.e., human-caused) carbon dioxide
(CO2) emissions (Lindoso 2019; Friedlingstein et al. 2022). Yet,
gaps in our knowledge of the spatial and temporal variability
in the natural marine carbon sink limit our ability to assess
potential future changes in this important process. Indeed,
owing to a lack of continuous observations of surface ocean

CO2 and air–sea CO2 fluxes, especially in high-latitude re-
gions and during the winter season, the long-term variability
of the physical and biological processes that contribute to the
marine carbon sink remains poorly understood (McKinley et
al. 2011; Fay and McKinley 2013; Wanninkhof et al. 2013). To
address this knowledge gap, we must improve the spatial and
temporal coverage of marine carbon flux observations (Aricò
et al. 2021) and integrate new data with efforts to improve
ocean biogeochemical modelling and climate projections.
These tools should be used alongside other approaches
from non-scientific viewpoints (e.g., traditional knowledge)
to inform the co-development of climate change impact
adaptation strategies and marine mitigation methods.

In Canada, current climate policy focuses on energy sys-
tems, infrastructure, transportation, and the terrestrial car-
bon sink. Presently, the marine carbon sink is excluded from
climate policy considerations in the Pan-Canadian Frame-
work on Clean Growth and Climate Change (Government
of Canada 2016; Dion et al. 2021). However, the Canadian
coastline is the largest in the world, touching three major
ocean basins: the Pacific, Arctic, and Atlantic (Fig. 1). In these
waters, both physics and biology cause the marine carbon

FACETS 8: 1–21 (2023) | dx.doi.org/10.1139/facets-2022-0214 1

FA
C

E
T

S 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.f
ac

et
sj

ou
rn

al
.c

om
 b

y 
18

.2
16

.5
3.

14
3 

on
 0

5/
12

/2
4

https://orcid.org/0000-0001-9189-5134
https://orcid.org/0000-0002-8324-3301
https://orcid.org/0000-0003-1456-6489
https://orcid.org/0000-0002-3290-3613
https://orcid.org/0000-0003-2539-263X
https://orcid.org/0000-0002-6516-0190
https://orcid.org/0000-0002-2265-780X
https://orcid.org/0000-0001-9631-479X
https://orcid.org/0000-0002-0572-9488
https://orcid.org/0009-0000-1144-0915
https://orcid.org/0000-0002-5164-264X
https://orcid.org/0000-0003-2460-6632
https://orcid.org/0000-0002-3460-4377
mailto:pjduke@ucalgary.ca
http://dx.doi.org/10.1139/facets-2022-0214


Canadian Science Publishing

2 FACETS 8: 1–21 (2023) | dx.doi.org/10.1139/facets-2022-0214

Fig. 1. Schematic of major surface ocean currents in Canada’s adjacent ocean basins and both seasonal minimum and maxi-
mum sea ice extents. The map uses a Lambert conformal conic projection.

sink to vary strongly over space and time (Laruelle et al.
2018; Fennel et al. 2019). As the data we have compiled will
show, Canada’s oceans are collectively considered a natural
CO2 sink with large heterogeneity, making it difficult to
incorporate the marine system into Canada’s climate change
mitigation plans, let alone the United Nations’ Framework
Convention on Climate Change emissions accounting sys-
tem (Dion et al. 2021). To measure the success of the Paris
Agreement as part of the global stocktake (Peters et al.
2017), climate action and emission reduction targets must
be adjusted to reflect variability in the marine carbon sink
while considering the social equity of the resulting policies
(Boyce 2018; Carley and Konisky 2020; Peng 2020).

In reaching net-zero emissions, there is high demand from
governments and businesses for carbon dioxide removal
(CDR) projects, with many proposed in marine settings
(Cooley et al. 2022). Proposed projects include artificially
stimulating biological carbon drawdown or manipulating
seawater properties to enhance CO2 absorption (GESAMP
2019; NASEM 2021). In western Canada, the Provincial Gov-
ernment of British Columbia has designated coastal blue
carbon (i.e., carbon stored in marine systems) as a negative
emissions “technology” aimed at meeting emission reduction
goals (Government of British Columbia 2021). Other Cana-
dian jurisdictions will likely follow suit (Drever et al. 2021;
Fong and MacDougall 2023), with many start-up companies
and carbon creditors rapidly moving into ocean CDR (Hurd
et al. 2022). However, many proposed CDR approaches focus

on CO2 removal from seawater (GESAMP 2019), instead of
direct uptake from the atmosphere. While the resulting
deficit in oceanic CO2 drives the transfer of CO2 from the
atmosphere to the ocean, the timescale of re-equilibration
varies from weeks to months and depends heavily on various
environmental factors (e.g., gas transfer velocity, mixed layer
depth, ratio between marine carbonate system chemical
species, and water mass subduction; Wanninkhof et al. 2009;
Jones et al. 2014). A firm understanding of processes driving
carbon fluxes and establishing environmental baselines be-
comes critical to ensuring emerging ocean CDR techniques
are robust, permanent, measurable, and verifiable. In the
absence of such considerations, CDR approaches may simply
involve moving CO2 between different oceanic carbon pools,
which may help mitigate ocean acidification locally but does
not lead to CO2 removal from the atmosphere, the latter
being required for climate change mitigation.

As a consequence of the oceanic uptake of anthropogenic
CO2, ocean acidification is an increasingly prominent threat
to both marine ecosystems and shellfish aquaculture (Orr
et al. 2005; Doney et al. 2012, 2020; IPCC 2013). For exam-
ple, increased acidity negatively impacts marine organisms
that build calcium carbonate shells or skeletons (Azetsu-
Scott et al. 2010) (e.g., corals, bivalves, coccolithophores,
and pteropods), which may have consequences for marine
food webs (Fabry et al. 2008; Haigh et al. 2015), includ-
ing the culturally and economically relevant species that
rely on them. Key commercial species such as oysters,
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mussels, and lobsters are particularly vulnerable to ocean
acidification effects (Barton et al. 2012; Ekstrom et al. 2015;
McLean et al. 2018), jeopardizing Canadian aquaculture
revenues of approximately $115 million per year (Fisheries
and Oceans Canada 2019a) and fisheries revenues of $3.6
billion per year (Fisheries and Oceans Canada 2019b). Coastal
communities, especially First Nations that have constitution-
ally protected rights to traditional harvests, will likely incur
unquantifiable social, cultural, and economic losses through
the consequences of ocean acidification. Some ocean CDR
approaches offer associated ocean acidification mitigation
co-benefits (e.g., ocean alkalinity enhancement; Bach et al.
2019). In Canada, the British Columbia Ocean Acidifica-
tion and Hypoxia Action Plan will support commitments
within the CleanBC Roadmap to 2030 to explore ocean CDR
(Government of British Columbia 2022).

Coastal Indigenous communities, as rights and title hold-
ers, will disproportionately require ocean acidification mit-
igation strategies and be faced with evaluating ocean CDR
project proposals (Lezaun 2021). Natural science research is
not immune to or removed from the need for reconciliation
to rebalance relationships with First Nations (Truth and Rec-
onciliation Commission of Canada 2015), which can create
a path forward based on trust and respect (McGregor 2018;
Wong et al. 2020; Kovach 2021). Indigenous peoples have a
deep understanding of the land and waterways that comprise
their traditional territories and continue to require new in-
formation to adapt to climate change impacts. Collaborative
efforts to bridge different knowledge systems (Indigenous
and Western) can help solve complex climate adaptation and
mitigation problems. However, there is no one-size-fits-all ap-
proach to integrating different knowledge systems (Rivers et
al. 2023). These projects require meeting individual commu-
nity needs in a tailored approach built on trust, and those
needs vary between coasts and nations (Rivers et al. 2023).

The next generation of oceanographers will need to evolve
ocean science research to aid in climate change mitigation
and adaptation action while addressing truth and reconcili-
ation with First Nations in Canada. Against the backdrop of
unprecedented rates of change in the marine environment
(Pörtner et al. 2019), these early career researchers are playing
(and will continue to play) a critical role in creating and reg-
ulating monitoring, reporting, and verification (MRV) proto-
cols for ocean CDR. Differentiating the immense background
noise of natural variability (i.e., seasonal, interannual, and
decadal), compounded with anthropogenic climate change
impacts, to discern and monetize ocean CDR intervention re-
quires complete marine carbon budgets (Legge et al. 2020).
Following widespread public criticism over forestry-based
carbon credits that did not lead to genuine atmospheric car-
bon reductions (Greenfield 2023), early career ocean scien-
tists will face strong public scrutiny to ensure ocean CDR is
real and durable.

In light of the challenges identified above, in this article,
we provide an early career perspective on the state of re-
search and necessary steps to improve our understanding
of the marine carbon sink in Canadian national and off-
shore waters. First, we outline the current state of knowl-
edge and major challenges to quantifying air–sea CO2 fluxes

in each of Canada’s three adjacent ocean basins (coastal and
offshore), along with coast-specific Indigenous-led or co-led
projects. In the Future Directions section, we present our
recommendations for future research initiatives. We pre-
scribe enhanced collaboration among the observational and
modelling communities and strongly advocate for the co-
generation of knowledge by scientists and First Nations. As
an interdisciplinary cohort of graduate students and postdoc-
toral fellows spanning five major Canadian universities and
seven different nationalities, this article offers firsthand in-
sight into the perspectives and direction for the upcoming
generation of Canadian carbon-flux research scientists and
ocean professionals.

Canadian marine CO2 uptake
Here, we have compiled the most complete collection of

reported air–sea CO2 flux data in Canadian and adjacent
open-ocean waters (Fig. 2 and Table S1), drawn from 61
published studies (14 Pacific, 8 Atlantic, 29 Arctic, and 10
global). This compilation of data will act as a reference for
future work and as a timestamp for monitoring efforts as
future climate change impacts the variability and intensity
of the marine carbon sink. Figure 2 summarizes air–sea CO2

flux density (i.e., the amount of CO2 moving between the
atmosphere and surface ocean in a given area and time) esti-
mates complied in Table S1 in Canadian waters from a range
of observational studies, interpolation-based products, and
biogeochemical models. Air–sea CO2 flux estimates based on
marine carbon state variables other than the partial pressure
of CO2 (i.e., dissolved inorganic carbon (DIC), alkalinity, and
pH) have been excluded due to the elevated uncertainty
of such calculations (Orr et al. 2018). In general, Canadian
waters are a net sink for atmospheric CO2 (Fig. 2 and Table
S1). However, given the current uncertainty attributed to
each individual estimate, as well as the variability and time
between estimates, we cannot yet quantify a “policymaker-
relevant” value in terms of grams of CO2 uptake per year.
The compiled estimates come from both inside Canada’s
exclusive economic zone (200 mile offshore limit) and be-
yond it, including the offshore open ocean regions adjacent
to Canada’s shelf seas. Table S1 also includes expanded
Arctic coverage of air–sea CO2 flux estimates. The offshore
regions were included based on the transboundary nature of
ocean processes and their potential influence on fluxes along
Canada’s continental margins (Fig. 1), as well as Canada’s
proximity to monitoring for global stocktake efforts. This
collection of air–sea CO2 flux estimates only addresses one
component of building complete marine carbon budgets
(Legge et al. 2020). Carbon fluxes between other stocks,
including the water column (pelagic), seafloor sediments
(benthic), and at the terrestrial-to-marine interface (river
input), as well as fluxes of non-CO2 greenhouse gases (e.g.,
methane and nitrous oxide), are not the focus of this article.

Canadian Pacific
The Subarctic Northeast Pacific appears to behave as a net

sink for atmospheric CO2 at present (Fig. 2). However, the
Canadian Pacific comprises diverse oceanographic regions——
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Fig. 2. Air–sea CO2 flux densities by region in mol C m−2 year−1. Negative flux (blue) indicates oceanic uptake and positive
flux (red) indicates oceanic outgassing. The estimation method is indicated as follows: direct observations (solid dark bars),
observation-based interpolation products such as neural network (NN) and multiple linear regression (MLR) (hatched bars), and
regional ocean biogeochemical models (solid light bars). Bars with a maximum and a minimum for the same study have the
minimum indicated on the same bar. The bars with a white filling are the average for the region. The error bars for the regional
average indicate the standard deviation. The error bars in individual studies indicate the reported uncertainty. Numbers above
or below the bars indicate the references: 1) Wong and Chan (1991), 2) Sutton et al. (2017), 3) Palevsky et al. (2013), 4) Chierici,
Fransson and Nojiri (2006), etc. Details are in Table S1. Expanded Arctic coverage in Table S1. Modified and expanded on from
Fennel et al. (2019). The map uses a Lambert conformal conic projection.

open ocean, continental shelf, marginal sea (i.e., Salish Sea),
and numerous fjords——that contribute to large spatial vari-
ability in the magnitude and direction of the air–sea CO2 flux.

Published results suggest an overall open ocean CO2 sink
of −1.1 ± 0.6 mol C m−2 year−1 (mean and standard de-
viation from Table S1). While persistently undersaturated
with respect to atmospheric CO2, the seasonal amplitude in

surface ocean CO2 is also relatively small (approximately 20
μatm; Sutton et al. 2017), mainly reflecting competing sea-
sonal variability in sea surface temperature and DIC content
(Wong et al. 2010; Sutton et al. 2017). Through the spring and
summer, rising sea surface temperatures increase the partial
pressure of surface ocean CO2 while biology consumes car-
bon in the iron-limited, high-nutrient low-chlorophyll region
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Fig. 3. Conceptual model of wind-induced upwelling along the West Coast of North America. Equatorward winds combined
with Coriolis force move nearshore surface waters offshore, forcing colder, nutrient-, and dissolved inorganic carbon (DIC)-
rich subsurface waters to rise to the surface, leading to outgassing. As the new stratified surface waters move offshore, rapid
phytoplankton blooms deplete nutrients and lower CO2, enhancing uptake.

(Freeland et al. 1984; Dugdale and Wilkerson 1991; Martin
et al. 1994; Aumont et al. 2003; Wong et al. 2010). Over the
fall and winter, sea surface cooling decreases the partial
pressure of surface ocean CO2 while mixed layer deepening
mixes high-CO2 water into the surface (Wong et al. 2010). Ob-
served long-term changes in CO2 fluxes show a clear increase
in surface ocean CO2 generally consistent with, or slightly
weaker than the atmospheric CO2 increase (Wong et al. 2010;
Franco et al. 2021). Further north, the upwelling strength
of the subpolar Alaskan Gyre has been shown to be the
dominant control on surface carbonate chemistry seasonally
(Fig. 1; Chierici et al. 2006; Palevsky et al. 2013; Brady et al.
2019) and on longer timescales (Hauri et al. 2021). Increased
winter wind speeds drive stronger gyre upwelling, bringing
CO2-rich subsurface waters to the surface leading to seasonal
outgassing (Chierici et al. 2006). Over decadal timescales,
this upwelling strength can dampen or accelerate apparent
ocean acidification rates (Hauri et al. 2021).

Along the continental margin, strongly varying estimates
suggest a seasonal summer CO2 source (Fig. 2). The air–sea
CO2 flux of coastal waters is heavily impacted by upwelling
(Fig. 3), river plumes, and coastal currents (Ianson et al. 2003;
Nemcek et al. 2008; Evans et al. 2012, 2019; Evans and Mathis
2013). Upwelling along the Pacific eastern boundary shelf
has contrasting impacts on the oceanic CO2 sink (Fig. 3). Up-
welling stimulates biological CO2 uptake by supplying nutri-
ents for primary production (Messié and Chavez 2015) leading
to very strong atmospheric uptake values in bloom hotspots

(Fig. 3 and Table S1; Ribalet et al. 2010). Upwelling also trans-
ports high-CO2 water from depth to the surface, counter-
acting biological uptake and temperature-driven CO2 uptake
(Fig. 3; Christensen 1994; Ianson and Allen 2002; Feely et al.
2008; Chan et al. 2017). The balance of upwelling to down-
welling strength has been shown to be a dominant control
on air–sea CO2 flux along the Canadian Pacific continental
slope and shelf (Ianson et al. 2009). In general, regions further
north, such as Queen Charlotte Sound, are expected to act as
a stronger atmospheric CO2 sink driven by stronger winter
downwelling pushing high-CO2 subsurface shelf waters off-
shore (Ianson et al. 2009). Within the Salish Sea, Alaska’s In-
side Passage, and coastal inland fjords, gas fluxes into and out
of the ocean are highly episodic and spatially heterogeneous
(Jarníková et al. 2022), owing to seasonal freshwater input,
high organic matter fluxes, and longer residence times (i.e.,
nutrient trapping; Jarníková et al. 2022), and the significant
variability in tidal mixing throughout the coastal archipelago
of British Columbia (Evans et al. 2022).

Historically, the Subarctic Northeast Pacific has been rel-
atively well sampled for surface ocean CO2 measurements
(Bakker et al. 2016). The Line P program, operated by Fish-
eries and Oceans Canada, has contributed over 30 years of
sustained inorganic carbon system observations. While the
program constitutes one of the longest such time series in the
global ocean (Freeland 2007; Franco et al. 2021), samples are
usually only collected three times a year. The Ocean Station
Papa mooring operated by the US-based National Oceanic and
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Atmospheric Administration offers continuous ocean carbon
measurements beginning in 2007 at the oceanic end of Line P
(Sutton et al. 2017). Increased international Biogeochemical-
Argo profiling float deployments in the region will also likely
lead to improved air–sea CO2 flux estimates (Bushinsky et al.
2019). Despite the large number of studies conducted in the
Canadian Northeast Pacific (Table S1), the mechanisms driv-
ing past and potential future changes in the marine CO2 sink
remain unclear (O’Neill et al. 2018). Projected restrictions in
upper ocean mixing due to increased seasonal stratification
(Durack et al. 2012; Freeland 2013; Cummins and Ross 2020)
and warming (Capotondi et al. 2012) will likely alter the sea-
sonal CO2 cycle (Fassbender et al. 2018a, 2018b; Landschützer
et al. 2018) and the net flux. The impact of interannual vari-
ability (e.g., El Niño-Southern Oscillation, Pacific Decadal Os-
cillation) and extreme events (e.g., marine heatwaves) on the
air–sea CO2 flux is just beginning to be understood (Mogen
et al. 2022). Marine heatwaves have already become longer-
lasting, more frequent, more extensive, and more intense
(Frölicher et al. 2018), with the Northeast Pacific experienc-
ing dramatic temperature anomalies during 2014 and 2019
(Bond et al. 2015; Ross et al. 2019).

Modelling and observation work suggest that the time re-
quired to distinguish changes in the magnitude of the ocean
carbon sink due to anthropogenic climate change is longer
in the Northeast Pacific than in other Canadian ocean basins
(McKinley et al. 2016; Sutton et al. 2019; Gooya et al. 2023).
The longer time to detection is due to surface ocean CO2 in
the region largely increasing at a rate similar to atmospheric
CO2. Similar growth rates cause the change in the carbon
sink to remain small, while internal variability remains large
relative to the anthropogenic signal (Resplandy et al. 2015;
McKinley et al. 2016; Sutton et al. 2019). There is a glaring
lack of continuous observations during the winter months
(the entire region) and year-round in some regions (e.g.,
coastal waters and regions surrounding Haida Gwaii), which
are required to describe this natural variability (Hunter et
al. 2015). High-spatial and temporal-resolution regional bio-
geochemical models have been successful in describing the
influence of terrestrial freshwater inputs, spatial heterogene-
ity in the upwelling zone, and submesoscale eddies (Table
S1). However, these modelling studies remain limited in their
spatial extent and multiyear coverage required to character-
ize the entire Canadian West Coast over decadal timescales.
Similarly, observations of coastal waters have limited tem-
poral coverage, with most coastal interpolation-based
products only capable of producing seasonal climatologies
(Table S1).

Enhanced collaboration is needed in improving observa-
tional coverage in the Northeast Pacific, communicating
with stakeholders (e.g., commercial fishers and aquaculture
farmers) and rightsholders (e.g., First Nations) on chang-
ing ocean acidification risk, and developing community-first
governance policies with respect to ocean CDR approaches.
Priority should be placed on building relationships leading
to knowledge sharing and knowledge co-production with
Indigenous-led groups actively developing and updating ma-
rine use plans (Wong et al. 2020). The Marine Plan Partner-
ship Initiative, developed by the province of British Columbia

and 17 member First Nations, has already created guiding
policy around the management of human activities in north-
ern coastal territorial waters using an ecosystem-based man-
agement framework (Marine Planning Partnership Initiative
2015d, 2015b, 2015a, 2015c). The First Nations Health Author-
ity’s “We All Take Care of the Harvest” program aims to help
coastal communities plan for and manage climate impacts
that affect seafood. The Government of Canada’s “Salish Sea
Initiative” offers funding for collaborative Indigenous marine
ecosystem stewardship activities. The First Nations Fisheries
Council of British Columbia’s action plan is built around rela-
tionships and reconciliation, aquatic resource management,
safeguarding habitat, and responding to threats like climate
change (Haggan et al. 2009; Atlas et al. 2019). Enhanced ob-
servation of carbon fluxes and policy around ocean CDR and
MRV could be woven into these ecosystem-focused marine
use plans and expanded to other communities using the same
collaborative framework (Diggon et al. 2021, 2022). This ap-
proach would create a strong knowledge base to evaluate
climate impacts and ecosystem impacts related to negative
emission technologies.

Canadian Atlantic
Overall, the Northwest Atlantic Ocean acts as a net sink of

atmospheric CO2 (Fig. 2). However, many coastal regions (e.g.,
Gulf of St. Lawrence, Scotian Shelf, and Bay of Fundy) poten-
tially act as a source of CO2 for the atmosphere (Fig. 2). The
Scotian Shelf, for example, is a highly variable region, with
CO2 flux estimates ranging from a strong source of CO2 to
the atmosphere (Shadwick et al. 2011; Rutherford et al. 2021)
to a weak sink for atmospheric CO2 (Signorini et al. 2013).
Air–sea CO2 fluxes in the Labrador Sea are approximately 40%
larger relative to those of open ocean regions in the Canadian
Pacific, largely due to differences in winter mixing depth be-
tween the two regions.

The Labrador Sea is a deep-water formation site where
cool, dense water sinks to depth (up to 2000 m in a matter of
days; Marshall et al. 1998, 2001) before flowing equatorward
as part of the global ocean thermohaline circulation (Wunsch
2002). This process has the potential to move atmospheric
CO2 taken up by surface ocean waters to depth (Fig. 4), draw-
ing a direct connection between the atmosphere and the
deep ocean, where it can remain trapped for timescales on
the order of up to thousands of years (Broecker 1979). Deep
water formation renews the region’s capacity to maintain
high CO2 uptake rates by exposing deep water with little an-
thropogenic carbon to the atmosphere (Figs. 2 and 4; Gruber
et al. 2019a). Given the importance of the Labrador Sea as a
region of intense anthropogenic carbon uptake (Khatiwala et
al. 2013; Devries 2014; Gruber et al. 2019a), it also represents
(at present) one of the largest gaps in CO2 observations in
Canadian waters (Table S1). Dominant processes that drive
the seasonal variability of surface ocean CO2 in the Central
Labrador Sea include deep convection in the fall and winter
driven by cooling and by the cyclonic boundary currents in
the basin (Fig. 1; Rieck et al. 2019). Deep convection brings
high-CO2 and nutrient-rich water from depth to the sur-
face, reducing oceanic uptake of atmospheric CO2 over the
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Fig. 4. Conceptual model of subpolar Atlantic Ocean deep convection. During summer, biological production combined with
strong stratification draws down surface DIC, enhancing CO2 uptake. Increased wind and buoyancy loss in the fall encourage
deeper mixing to supply higher DIC from below the summer mixed layer depth. Deep convection continues to increase DIC
throughout the mixed layer in the winter, weakening CO2 uptake. In the spring, mixed layer shoaling and increasing solar
irradiance promote surface DIC removal by large-scale phytoplankton growth, subsequent export, and remineralization be-
low the springtime mixed layer, a portion of which is exported below sequestration depth and laterally by the equatorward
boundary current.

winter months (Fig. 4). In the spring, biological uptake acts
to reduce CO2 at the surface and increase air–sea CO2 fluxes,
leading to enhanced uptake of atmospheric CO2 from spring
to summer (Fig. 4; DeGrandpre et al. 2006; Körtzinger et al.
2008; Atamanchuk et al. 2020). Preconditioned by upwelled
nutrients driven by the winter deep convection and the
increasing supply of sunlight, the North Atlantic spring
phytoplankton bloom in the Labrador Sea is one of the most
efficient biological carbon pumps globally (Baker et al. 2022).
Following the bloom, large organic particles and aggregates
sink out of the surface mixed layer due to gravity, moving
CO2 to depth (Briggs et al. 2011; Villa-Alfageme et al. 2016).
Smaller particles and dissolved carbon are removed from
the surface in the fall and winter by vertical mixing through
deepening of the surface mixed layer (Dall’Olmo et al. 2016;
Lacour et al. 2019), eddy activity (Resplandy et al. 2019), and
large-scale subduction (Hansell et al. 2009). The succession
of these carbon export fluxes in the Labrador Sea allows
continuous carbon export to depth year-round (Fig. 4; Boyd
et al. 2019). Over interannual and decadal timescales, during
the positive phase of the North Atlantic Oscillation, subpolar
regions experience increased vertical mixing and lower sea
surface temperatures, driving variability in Northwestern
Atlantic Ocean CO2 fluxes (Thomas et al. 2008; Ullman et
al. 2009; Yashayaev and Loder 2017). Under global warming,
shoaling of the mixed layer depth and the addition of glacial
meltwater could impact the future biological regime of the
Labrador Sea by increasing stratification (Balaguru et al.
2018; von Appen et al. 2021).

As the cold and fresh Labrador Sea current warms flowing
southward along the Newfoundland-Labrador and Scotian
Shelf (Fig. 1), surface ocean CO2 levels rise above saturation,
leading to outgassing, uncharacteristic of high-latitude con-
tinental shelves (Fig. 2). This coastal environment is further
complicated by the upwelling of cold, high-CO2 and nutrient-
rich waters along the continental slope, which increase sur-
face ocean CO2 levels to feed the spring phytoplankton bloom
before reducing CO2 again. This process is comparable to
upwelling in the Northeast Pacific (Fig. 3). However, unlike
the West Coast of Vancouver Island, where the high-CO2 up-
welled water causes an increase in surface ocean CO2 (Evans
et al. 2012), on the Scotian Shelf, the cooling effect of the up-
welled water has been shown to overwhelm the CO2 increase,
resulting in a net decrease in surface ocean CO2 (Rutherford
et al. 2021). The reason for this difference is linked to global
ocean circulation patterns, where subsurface waters in the
Pacific tend to accumulate a greater amount of DIC due to
the remineralization of organic matter (England 1995). The
competing mechanisms of upwelled water on air–sea CO2

fluxes are highly variable spatially and temporally, making
them difficult to capture in observations or numerical mod-
els. This difficulty can lead to diverging results between stud-
ies characterizing the Scotian Shelf as both a source and sink
of CO2 (e.g., Table S1; Shadwick et al. 2011; Laruelle et al.
2014; Rutherford et al. 2021). In the Gulf of St. Lawrence,
tidal and estuarine mixing brings respired organic matter
into the surface layer, driving CO2 outgassing in the shallow
mouth of the estuary (Dinauer and Mucci 2017). In the deeper
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oceanward part of the St. Lawrence region, enhanced bio-
logical drawdown keeps surface ocean CO2 undersaturated,
driving net uptake from the atmosphere (Dinauer and Mucci
2017). However, these fluxes may shift in the future due to
increased biological production (Dinauer and Mucci 2018).

Air–sea CO2 fluxes at both offshore and coastal regions of
the Canadian Northwest Atlantic are directly affected by the
formation of Labrador Sea Water, which in turn drives the
variability and intensity of the Labrador current. Uncertainty
in air–sea CO2 fluxes is largely attributed to the sparsity of
direct observations in the Labrador Sea and much of the
subpolar North Atlantic, a lack of agreement between wind
speed products (Atamanchuk et al. 2020), and not enough
direct estimates of the volume of Labrador Sea water for-
mation during any given winter (Li and Lozier 2018). Most
surface ocean CO2 observational data in the Northwest At-
lantic Ocean comes from the Ship-Of-Opportunity Program
using volunteer merchant ships, with spatial coverage most
densely concentrated around busy shipping tracks (Bakker
et al. 2016). Regions of greatest spatial coverage include
the Southern Labrador Sea, the Gulf of Maine, and the Gulf
Stream region south of Nova Scotia off the east coast of the
United States (Fig. 1), whereas the Grand Banks region, along
with both the shelves of Labrador and Newfoundland, as
well as the Central Labrador Sea remain very data sparse.
For those data-poor regions, ongoing monitoring programs
like the Atlantic Zone Off-Shelf Monitoring Program and
Atlantic Zone Monitoring Program (Therriault et al. 1998;
Ringuette et al. 2022) are making important efforts to pro-
vide additional continuous observations, but are still limited
to summer sampling programs. International monitoring
programs also contribute significantly to observations in the
region, such as GO-SHIP (AR07W, A02, and Davis monitoring
lines), Overturning in the Subpolar North Atlantic Program
(OSNAP), and Biogeochemical-Argo (Lacour et al. 2019). The
absence of buoys measuring wind speed in the Labrador
Sea also contributes to air–sea gas exchange uncertainties
(Atamanchuk et al. 2020). Improving our understanding of
the controls on air–sea CO2 fluxes in the Central Labrador
Sea may even lead to improved estimates for the whole North
Atlantic basin (Friedrich and Oschlies 2009). The importance
of the region for global marine carbon uptake emphasises
the value of maintaining the Atlantic Repeat Hydrography
Line AR07W line operated by Fisheries and Oceans Canada
(Hall et al. 2013) across the Central Labrador Sea. The use of
new autonomous sensing platforms for measuring CO2 (e.g.,
using wave gliders as in DeYoung et al. 2020) may also play an
important role in gap filling. The success of a few previously
deployed long-term moorings in the region has greatly im-
proved our understanding of the seasonality of CO2 fluxes in
the Labrador Sea, such as the most recent completed by the
SeaCycler deployment in 2016/2017 (Atamanchuk et al. 2020)
and the others deployed in the early 2000s (DeGrandpre et
al. 2006; Körtzinger et al. 2008; Martz et al. 2009).

Like in Pacific Canada, traditional knowledge exchange
and collaboration between the scientific community, govern-
ment entities, and First Nations can prove to be extremely
successful. Atlantic Canada is home to many Indigenous
groups, offering immense opportunity for traditional

knowledge exchange and collaboration in ocean observ-
ing/monitoring efforts (Proulx et al. 2021). Alexander et
al. (2019) mapped past research (in marine management,
monitoring, and marine research) published in collaboration
with Indigenous communities in Canada. In Atlantic Canada,
only five case studies were found in the literature, making
this region the one with the fewest collaborations compared
with the Arctic and Pacific Canada. Further, in the report of
Moran et al. (2022), there is only one community monitoring
platform directly collaborating with Indigenous groups on
the East Coast, located in Placentia Bay, Newfoundland. Yet,
Eger et al. (2021) show increasing opportunities for inte-
grated marine management with Indigenous groups in the
Bay of Fundy area. While historically, Atlantic Canada has
missed a myriad of opportunities within these Indigenous
collaborations, there is a promising new Atlantic Regional
Association of the Canadian Integrated Ocean Observing
System——CIOOS (Stewart et al. 2019) pushing to create pro-
grams with Indigenous communities (Proulx et al. 2021). As
early career ocean professionals (ECOPs), we strongly suggest
that the efforts of CIOOS-Atlantic include air–sea CO2 fluxes
as a research area of focus in both coastal and offshore
regions of Atlantic Canada.

Canadian Arctic
The Arctic Ocean is predominantly a CO2 sink (Fig. 2). Cur-

rent estimates indicate that the pan-Arctic Ocean constitutes
5% to 14% of the global oceanic CO2 uptake, despite covering
only 3% of the global ocean area (Bates and Mathis 2009). Up-
take values reported in the Canadian Arctic are among the
highest in Canadian waters (Fig. 2), but are sparse and highly
disparate in space and time (Table S1).

Arctic Ocean air–sea CO2 fluxes are uniquely impacted by
the presence of sea ice, which effectively prevents air–sea
CO2 exchange (Figs. 1 and 5). Variability in ice conditions
thus explains part of the regional and temporal distribution
of CO2 uptake, with areas of longer open water seasons be-
ing stronger sinks (e.g., Chukchi Sea, Baffin Bay, Labrador
Sea; Fig. 2). Harsh Arctic weather and ice conditions induce
a seasonal bias in field observations, restricting most scien-
tific campaigns to take place over the summer months (Ta-
ble S1). This observation gap is usually waived by considering
non-open water seasons as negligible to the annual contribu-
tion (e.g., Loose et al. 2011; Ahmed et al. 2021). However, ob-
served wintertime CO2 fluxes in comparatively smaller scale
polynyas and ice leads are one to two orders of magnitude
higher than predicted by theory in open waters (Else et al.
2011). On top of the physical flux barrier, sea ice chemistry
affects CO2 fluxes through the sea ice carbon pump during
both sea ice formation and melt (Rysgaard et al. 2011). During
sea ice melt, dissolution of ikaite (a form of calcium carbon-
ate in sea ice) lowers surface ocean CO2, increasing the po-
tential for atmospheric uptake (Fig. 5; Rysgaard et al. 2013).
During sea ice formation, high-CO2 brine within the ice is re-
jected into the underlying seawater and sinks to depth (Fig. 5;
Rysgaard et al. 2007). Both processes significantly modify air–
sea CO2 fluxes during fall and spring (DeGrandpre et al. 2019;
Mortenson et al. 2020; Duke et al. 2021). Finally, sea ice also
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Fig. 5. Conceptual model of the Arctic Ocean sea-ice carbon pump. During summer, sea ice melt results in the dissolution of
ikaite (a form of calcium carbonate in sea ice) crystals within the ice to increase surface ocean alkalinity, lowering the partial
pressure of CO2 and enhancing uptake. Additionally, primary productivity in both sea ice and the water column further reduces
CO2. Subsequent ice formation in the winter results in dissolved inorganic carbon (DIC) being rejected together with dense
brine that sinks.

impacts biological CO2 drawdown in a number of ways, by
imparting local controls on the timing, duration, and magni-
tude of spring and summer primary production (Rysgaard et
al. 1999; Arrigo et al. 2008; Søreide et al. 2010; Arrigo et al.
2012).

Regardless of the past or present state of the carbon budget
in the Arctic Ocean, its future is likely to be significantly dif-
ferent. The Arctic is warming at two to three times the rate of
global warming (IPCC 2019). Sea ice decline is the archetype
of climate change signals. The reduction of multi-year sea ice
over the last decade has resulted in large portions of the Cana-
dian Arctic becoming seasonally ice-free (Yamamoto-Kawai et
al. 2009; Laxon et al. 2013; Wang et al. 2018) and a lengthen-
ing of the open water season (Maslanik et al. 2007; Perovich
et al. 2007). As a result, the ocean surface is becoming in-
creasingly exposed to atmospheric CO2 uptake (DeGrandpre
et al. 2020). In fact, Ahmed and Else (2019) estimated an
increase in CO2 uptake in the Canadian Arctic Archipelago
in the last four decades associated with increased sea ice
loss and higher wind speeds. While a longer ice-free season
introduces greater light availability for primary production,
nutrient replenishment of surface layers could either be
enhanced by increased wind mixing or reduced by increased
stratification due to ice melt (Lannuzel et al. 2020). Therefore,
the evolution and impact of primary production on the Arctic
marine carbon cycle remain an open question (Arrigo et al.
2008; Tremblay et al. 2015; Lannuzel et al. 2020). Meanwhile,
changes to the upper ocean’s salinity and temperature struc-
ture in the Barents and Kara Seas, referred to as Arctic “At-
lantification” (e.g., Årthun et al. 2019), may introduce poten-
tial consequences on ice formation and deep convection in
the Eurasian Basins (Timmermans and Marshall 2020). More-
over, coastal margins and the ice edge can also be important
pathways for carbon export (Nishino et al. 2011), particularly
as phytoplankton blooms may be stimulated by nutrients

derived from coastal rivers or seeded by ice algae (Matthes et
al. 2021). There is, however, some evidence that rivers may
drive localized marine organic carbon respiration (Izett et al.
2022), suggesting that some Arctic regions may experience
periodic net CO2 outgassing (Manning et al. 2020). Finally,
it is likely that future Arctic CO2 fluxes will exhibit varied
responses to ongoing permafrost thawing and changes in
river runoff, through various effects on nutrient and organic
matter inputs, and changes to local marine stratification
(Vonk and Gustafsson 2013; Prowse et al. 2015). Further,
increased methane bubbling and hydrate erosion will affect
the system (Westbrook et al. 2009).

In the context of this evolving Arctic Ocean with more
mobile ice packs, new ice-proof, autonomous observing
technologies are needed to close the fall, winter, and spring
observational gaps. Those technologies already exist in the
form of Ice-Tethered Profilers and Arctic Ocean Flux Buoys,
capable of year-round measurements, and regularly deployed
in the Beaufort Gyre. Meanwhile, renewed efforts to install
and maintain eddy covariance instruments in Iqaluktuttiaq

( , Cambridge Bay; Butterworth and Else
2018) or to expand the Barrow Strait Real Time Observatory
will be instrumental in providing year-round observations.
In addition to these local observations, international scien-
tific partnerships targeting a pan-Arctic approach will be
crucial to addressing the relevant questions surrounding the
quantification of CO2 fluxes in the Arctic Ocean. Examples
include the Synoptic Arctic Survey (Paasche et al. 2019), the
Pacific Arctic Group, the Distributed Biological Observatory
(Moore and Grebmeier 2018), and Ecosystem Studies of
Sub-Arctic and Arctic Seas (ESSAS). The use of numerical
models, with a coupled sea ice biogeochemistry component
covering the Arctic Ocean, will also be important to obtain
a more comprehensive understanding of the carbon system
in the northernmost Canadian Ocean. The future fate of the

FA
C

E
T

S 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.f
ac

et
sj

ou
rn

al
.c

om
 b

y 
18

.2
16

.5
3.

14
3 

on
 0

5/
12

/2
4

http://dx.doi.org/10.1139/facets-2022-0214


Canadian Science Publishing

10 FACETS 8: 1–21 (2023) | dx.doi.org/10.1139/facets-2022-0214

Arctic Ocean atmospheric CO2 sink could “possibly increase
or decrease”, as detailed in Lannuzel et al. (2020). Such high
uncertainty is intrinsically linked to the high complexity
of the Arctic carbon cycle and to the drastic environmental
changes currently unfolding in that region. Enhanced efforts
are required to better observe and understand this high
complexity and to anticipate those drastic changes.

Scientific research conducted in the Canadian Arctic has
historically been motivated, designed, and implemented
from a southern settler perspective. This results in Inuit
Nunangat people being excluded and marginalized from the
benefits of northern research. Inuit Tapiriit Kanatami (2018)
provides vision and strategy implementation for empower-
ing research in Inuit Nunangat (i.e., the Inuvialuit Settlement
Region (Northwest Territories), Nunavut, Nunavik (Northern
Que´bec), and Nunatsiavut (Northern Labrador)) at a national
level. Pedersen et al. (2020) share 45 recommendations de-
veloped by Ikaarvik (meaning “bridge” in Inuktitut) youth
and mentors for researchers aiming to meaningfully con-
sult, engage, and incorporate Inuit communities in scientific
research. This work builds on the concept of ScIQ, the combi-
nation of Inuit Qaujimajatuqangit (IQ) and science. Pedersen
et al. (2020) describe Inuit Qaujimajatuqangit as a way of
knowing and a way of life that extends beyond traditional
knowledge, including knowledge, customs, and values, en-
compassing relationships, attitudes, and behaviours. The
recommendations describe actions researchers can take
before, during, and after conducting research in the north
to incorporate Inuit Qaujimajatuqangit within the entirety
of the scientific process.

Research gaps
There are still prominent gaps in our understanding of air–

sea CO2 flux variability across the Pacific, Atlantic, and Arc-
tic Oceans (Table 1). Scientific efforts in Canada and through
international collaborations in both observations and mod-
elling have narrowed the uncertainties associated with spe-
cific basin air–sea CO2 fluxes (Fig. 2 and Table S1). However,
these efforts are largely focused on resolving variability in the
seasonal cycle and determining mean annual flux values. We
still severely lack understanding of how air–sea CO2 flux vari-
ability is impacted on longer timescales or how fluxes may be
shifting under climate change (Table 1). Given the different
processes that dominate spatial and temporal heterogeneity
in air–sea CO2 fluxes (Figs. 3–5), we have summarized the ma-
jor basin-specific, process-focused research questions needed
to advance the field (Table 1).

Future directions
The next generation of oceanographers is witnessing

the emergence of a new ocean state. The need to reduce
present-day uncertainties, enhance our understanding of
tipping points, account for extreme climatic events in the
ocean, and document change from the preindustrial base-
line state presents exciting challenges for the oceanographic
community. These challenges are particularly relevant to
understanding air–sea CO2 fluxes across all three of Canada’s
adjacent ocean basins. Expanded use of emerging techniques

and greater cross-collaboration between observation and
modelling specialists could narrow the range of uncertainty
in regional to basin-scale fluxes, improve observational
coverage, inform carbon stocktake efforts, establish a base-
line for proposed ocean CDR projects, and support ocean
acidification mitigation and adaptation efforts (Table 2).

Maturing autonomous carbon system sensor technology
(Sonnichsen et al. 2023) and deployment on innovative
autonomous monitoring platforms such as gliders, surface
vehicles, floats, and profiling moorings offer increased
observational capacity beyond time series and sporadic
underway sampling (Sastri et al. 2019; Chai et al. 2020). New
and planned satellite missions offer improved observation
capabilities, particularly of the active gas exchange surface
layer (Woolf et al. 2016; Watson et al. 2020) and of surface
and vertical water transport (Ardhuin et al. 2018; Oubanas
et al. 2018), enabling measurement of biogeochemical fronts
associated with upwelling, marginal sea-ice zones, and
across heterogeneous continental shelf boundaries and river
outflows (Shutler et al. 2020). Furthermore, submission of
surface ocean CO2 observation data to global databases (e.g.,
Surface Ocean CO2 Atlas; Bakker et al. 2016) is extremely
important to increase accessibility, quality assurance, and
control of data, as well as end-user reusability. The principles
of FAIR (Findable, Accessible, Interoperable, and Reusable;
Tanhua et al. 2019) and CARE (Collective Benefit, Authority
to Control, Responsibility, and Ethics; Tanhua et al. 2019;
when relevant using Indigenous-owned data and knowledge)
should be adhered to when considering a project’s data
lifecycle. These breakthroughs in innovative observation
platforms and increasing public availability of data coincide
with the emergence of machine learning and higher comput-
ing capacity that can be used to simulate the marine carbon
system during periods or within regions devoid of sufficient
observations (Landschützer et al. 2014) or to project future
changes. Integrating multiple ways of knowing outside con-
ventional western science observations can result in richer
outcomes with greater breadth from a stronger framework
of research questions established through early engagement
(Ban et al. 2018). Indigenous peoples’ communal memory,
as an example, is capable of observing trends or variations
in their lands that no other sensor can replicate (Alessa et
al. 2016), often outside western science monitoring metrics
(Table 2). This could include contributing alternative data
sources (e.g., qualitative measures embedded in traditional
laws or stories; Ban et al. 2018) or contextualizing, inter-
preting, and applying results from earth observations (e.g.,
Mittimatalik sea ice charts; Wilson et al. 2021).

Considering, specifically, the marine carbonate system,
existing numerical models need to be carefully calibrated
against observations, and parameterizations need to be
improved. Observations are needed to evaluate the per-
formance of existing models and carefully calibrate them
through data assimilation to narrow the spread of air–sea CO2

flux estimates across model ensembles (Wang et al. 2016).
Assimilation of observations, especially biogeochemical
data, will improve understanding of historical carbon up-
take conditions and drivers of variability. Data assimilation
also improves near-real-time seasonal to decadal predictions
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Table 1. Overview of basin-specific research questions needed to aid resolving identified research gaps in this article.

Gap Research question

Shared across basins

Long-term change Where and why is the surface ocean increase in CO2 different from the atmospheric
trend, altering the ocean carbon sink?

Sub-decadal to decadal variability How do modes of climate variability impact air–sea CO2 fluxes (e.g., El Niño-Southern
Oscillation, Pacific Decadal Oscillation, North Atlantic Oscillation)?

Ocean carbon dioxide removal verification How can ocean carbon dioxide (CDR) interventions be differentiated from signals of
natural variability and anthropogenic climate change?

International collaboration Where can Canadian observation and modelling efforts collaborate with, benefit from,
and contribute to international ocean understanding?

Indigenous partnerships and capacity building How can research funding be leveraged to enhance collaboration with First Nations to
increase observations, address impending ocean CDR monitoring, reporting, and
verification (MRV) development, and ocean acidification action planning?

Complete marine carbon budgets What is the complete marine carbon budget in Canada, integrating carbon stocks and
fluxes across other marine pools (e.g., pelagic, benthic, and terrestrial to marine
interface)?

How can we quantify marine carbon budgets and rates of change in more variable and
dynamic regions (e.g., nearshore, upwelling regions, polynya regions, etc.)?

How can we combine different observation types (e.g., discrete, underway, autonomous,
observation-based products) and model outputs to resolve “policymaker-relevant”
flux values (g C year−1)?

Pacific Ocean

Marine heatwaves How will future longer-lasting, more frequent, and more intense marine heatwaves
change regional air–sea CO2 fluxes?

How will these impact primary productivity in the iron-limited, high-nutrient
low-chlorophyll region?

Upwelling to downwelling strength What is the balance of upwelling to downwelling strength that differentiates net annual
uptake from outgassing?

How is this pattern distributed spatially along the Canadian West Coast?

Atlantic Ocean

Deep-water formation rates How is climate change impacting Labrador Sea deep-water formation rates and depths?
How is carbon storage durability being impacted?

Biological carbon pump How will shoaling winter mixed layer depths under climate change impact
phytoplankton spring blooms and dissolved inorganic carbon cycling?

Scotian Shelf processes What is the net impact of upwelling on surface ocean CO2?
How do phytoplankton bloom initiation timing and spatial distribution change the net

annual flux on the Shelf ?

Arctic Ocean

Sea ice changes How is a younger, thinner sea ice cover with a smaller spatial extent and a longer open
water season changing the sign/magnitude of air–sea CO2 fluxes?

How is this changing sea ice carbon pump dynamics?

Freshwater stratification and productivity How will changes in surface stratification from sea ice melt, increased glacial runoff,
and changes in terrestrial runoff (e.g., permafrost thaw and riverine input) impact
air–sea CO2 fluxes due to differing water mass carbon loads and equilibration time?

How will this impact the timing and magnitude of phytoplankton blooms?

(forecasts), which are currently only indirectly initialized (Li
et al. 2019). Improved observational coverage, for example by
autonomous biogeochemical ocean Argo floats, will improve
our ocean modelling ability. Idealized model experiments
like those in Sarmiento et al. (1998) and Winton et al. (2013)
and multimodel ensemble comparison projects like those in
Cheng et al. (2013) and Frölicher et al. (2015) can be used to
understand the relative importance of different biogeochem-
ical processes and their response to the changing climate.
Further, these types of experiments can be important for
identifying the source of model ensemble uncertainty. Model
uncertainty in the ocean carbon flux is projected to be
largest where surface waters are connected to deeper waters

(Gooya et al. 2023). Improving ocean circulation in models,
which is a primary driver of ocean carbon flux variabil-
ity (McKinley et al. 2020), can reduce these uncertainties.
Regional downscaling of low-resolution models to higher
resolution, especially in heterogeneous regions like the
Canadian Arctic Archipelago, can result in more informa-
tive model projections (Table 2). As an example, mesoscale
eddies are quite important for mixing (and therefore also
impact air–sea CO2 fluxes; Ford et al. 2022), but are often
not resolved in current generations of earth system models
(Frölicher et al. 2015). Further, simplified and specialized
models can analyze the efficiency and climate-level feedback
of various proposed ocean CDR techniques. “Sampling” from
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Table 2. Table of recommendations for addressing gaps identified and improving air–sea CO2 flux estimates in Canada.

Category Recommendations Examples

Observations 1. Expand use of innovative autonomous
measurement technology and support its
development.

2. Submit relevant data to public repositories and
invest in maintaining global data
repositories/structures (national and international).

3. Integrate multiple knowledge systems.

� Instrument platforms (e.g., gliders, surface vehicles,
deep-water floats, profiling moorings, and ice-proof
platforms)

� Sensors (e.g., mobile high frequency dissolved
inorganic carbon and total alkalinity, and pCO2 remote
sensing capabilities)

� Satellite remote sensing
� Repositories (e.g., Canadian Integrated Ocean

Observing System (CIOOS), Surface Ocean CO2 Atlas
(SOCAT), and Global Ocean Data Analysis Project
(GLODAP))

� Mine data so earlier data are not lost
� CARE/FAIR data sharing principles
� Alternative data sources (e.g., qualitative data)
� Contextualizing Western science data

Modelling 4. Direct modelling efforts towards fit-for-purpose
ocean CDR and regional process study applications.

� Observation data assimilation and evaluation
� Multi-model ensemble comparison projects
� Regional downscaling
� Use of emergent constraint techniques

Ocean carbon dioxide
removal

5. Develop transparent and robust monitoring,
verification, and reporting (MRV) protocols.

6. Engage and consult with Indigenous communities.
7. Mobilize ocean acidification expertise.

� Clearly distinguishing intervention from baseline noise
� Integration of observations and models
� Establish code of conduct
� Adherence to community specific needs (e.g., First

Nations marine governance)
� Canada’s Ocean Acidification Community of Practice,

Ocean Acidification International Coordination Centre,
Global Ocean Acidification Observing Network, and
NOAA Joint Ocean Acidification Framework

Indigenous co-generation
of knowledge

8. Tailor community-specific approaches.
� Formulate research questions through community

collaboration
� Pre-study engagement and frequent collaboration

thereafter
� Collaborations built on meaningfully trusting

relationships
� Participation beyond data collection

Early career capacity
building

9. Increase significance of meaningfully engaging
Indigenous communities.

10. House specific projects in multidisciplinary
collaborative platforms.

11. Improve equity, diversity, and inclusion.

� Required course work on Indigenous history and rights
� Contribute to established community relationship

continuity
� Recognize community building activities within

dissertations
� Collaborate with interdisciplinary researchers to

deliver improved community-centered outcomes
� Expanded recruitment to include traditionally

marginalized groups valuing nontraditional metrics of
success

� Fair and equitable financial support for graduate
students and postdocs

models (looking at data from where and when we have real-
world observations within the full model field) can be used to
evaluate the performance of current observation gap-filling
techniques (Gloege et al. 2021) in regions of high air–sea
CO2 fluxes and high uncertainty (e.g., high-latitude oceans;
Gruber et al. 2019b). Moreover, new statistical tools and
techniques such as emergent constraints (a way of looking at
the relationship between a variable of current climate state
within individual models, and future changes in a variable
of interest that make up an ensemble) accelerate the devel-
opment and improvement of the next generations of earth
system models (e.g., Hall et al. 2019; Bourgeois et al. 2022).

Our poor understanding of air–sea CO2 flux variability
represents a major gap in current ocean CDR and carbon

credit generation program standards (Tables 1 and 2). Nega-
tive emission technologies must be additional to what would
have happened by law or under a business-as-usual scenario
if the project had not been carried out (Verra 2022). Enhanced
capacity and accuracy in both observations and modelling
efforts mentioned above can reduce air–sea CO2 flux uncer-
tainty, which is critical to clarifying what constitutes addi-
tional removal relative to baseline noise. However, as far as
developing trusted, unique, nonexchangeable carbon credits
from nature-based, mechanical, or geoengineered solutions
(NASEM 2021), considerations need to be made for which
carbon pool is being drawn down. Accounting must include
the transboundary nature of the ocean, the timescale of car-
bon removal, and, most importantly, if the process actually
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enhances ocean atmospheric CO2 uptake. We are much fur-
ther behind in defining the marine carbon stocktake com-
pared to the terrestrial carbon reservoir in Canada (Sothe et
al. 2022). Moving forward with marine nature-based solutions
that include tangible ecosystem co-benefits (e.g., ocean acid-
ification mitigation) through restoration and conservation
should continue to be a priority while recognizing their limi-
tations and potential leakage (Drever et al. 2021; Williamson
et al. 2022; Roth et al. 2023). Considerations also need to be
given to ensuring the safety and efficacy of ocean CDR given
the risk of uncertain impacts on human and environmental
welfare through a comprehensive code of conduct (Loomis et
al. 2022). Ocean CDR projects need to concentrate on acquir-
ing funding at the levels highlighted in the NASEM (2021) re-
port and conducting feasibility and scalability testing with a
focus on monitoring, reporting, and verification. The latter
should be performed through a lens of governance in line
with equity and justice goals (Kosar and Suarez 2021; Loomis
et al. 2022). Ocean CDR should not be used to delay carbon
emission reductions (Shutler 2020; Ho 2023).

Resolving air–sea CO2 fluxes helps resolve uncertainty in
ocean acidification, as strong atmospheric CO2 uptake gen-
erally leads to elevated trends and worsening ocean acidi-
fication conditions. Leveraging existing ocean acidification
infrastructure, expertise, and policies offers an exceptional
starting point for addressing uncertainty in air–sea CO2

fluxes and developing ocean CDR MRV (Table 2). National and
international ocean acidification infrastructure already ex-
ists (e.g., Canada’s Ocean Acidification Community of Prac-
tice; Ocean Acidification International Coordination Centre;
Hansson et al. 2014; Global Ocean Acidification Observing
Network; Newton et al. 2015; DFO-NOAA Joint Ocean Acidifi-
cation Framework; Government of Canada and Fisheries and
Oceans Canada 2018), along with widespread public attention
(United Nations Sustainable Development Goal 14.3; Barbière
et al. 2019). Experts from these communities are well suited
to address monitoring gaps in air–sea CO2 flux observations,
assess ocean CDR ecosystem impacts, and offer the public a
trusted voice advancing MRV development.

Throughout this paper, we have identified Indigenous-led
or co-led monitoring programs and coast-specific Indigenous
scientific collaborative frameworks built on recommenda-
tions from First Nations. Indigenous communities are likely
to experience greater climate impacts in Canada, while their
contribution to the global climate crisis is negligible. Indige-
nous peoples are a highly sensitive population at the inter-
section of climate change and community health (Ford et al.
2018; Kenny et al. 2020), facing a burden of existing social
disparity in health, education, food and energy security, gen-
erational trauma, and colonial legacies (Ford and Smit 2004;
Ford et al. 2010; Maldonado et al. 2013; Maru et al. 2014).
With an elevated emphasis from research and government
institutions on meaningfully engaging with First Nations,
new collaborations could improve traditional knowledge
exchange to enhance marine carbon cycle understanding.
The community-specific approach would follow successes
in mapping (Davies et al. 2020; Bishop et al. 2022), coastal
management (Weiss et al. 2013; Lombard et al. 2019), marine
conservation (Ban et al. 2009), observational oceanography

(Moran et al. 2022), and fisheries (Weatherdon et al. 2016;
Turgeon et al. 2018; Reid et al. 2021). As ocean CDR and In-
digenous involvement in the sector are both just emerging,
any new collaborative initiative should follow recommen-
dations made by Breckwoldt et al. (2021), including (1) the
need for participation beyond data collection, (2) acknowl-
edgment and mitigation of an agenda mismatch between
funded and needed research, and (3) emphasizing the power
of the transdisciplinary processes of learning together.

Pathways for early career researchers to meaningfully
engage with Indigenous groups and collaborate on climate
problems are restricted by institutional undervaluing, grad-
uate student timelines, a lack of funding, and traditional
academic metrics of success (e.g., peer-reviewed journal
publications). University students, and particularly interna-
tional students, may lack knowledge about Canada’s colonial
history and systemic oppression of Indigenous peoples
(Godlewska et al. 2020) and the ways that natural science
research can impact Indigenous communities (Bozhkov
et al. 2020; Kater 2022). Community relationship building
needs to be recognized as a priority investment and should
start with mandatory course work on Indigenous history
and rights taught by Indigenous instructors to enhance stu-
dent understanding of the socio-political landscape around
their research (Table 2; Wong et al. 2020). Given graduate
student timelines, it falls on the principal investigators
to identify which Indigenous government or community
has jurisdiction over or interests in the proposed research.
Principal investigators can create continuity in commu-
nity relationship building, which is critical to establishing
trust and genuinely engaging with rightsholders (Table 2).
Early dialogue should support Indigenous peoples’ self-
determination, focusing on what research is being proposed
and how the proposal meets the interests and priorities of
Indigenous communities while finding opportunities for
reciprocity (Wong et al. 2020). Mainstreaming reconciliation
in all aspects of the scientific endeavour, from formulation
to completion, as a requirement in Government of Canada
tri-council funding (Wong et al. 2020), integrated as a valued
component of traditional graduate student dissertations,
and moving forward with both treaty-based and resurgence-
based decolonial Indigenization of academic spaces and
places is severely overdue (Gaudry and Lorenz 2018).

Training and equipping ECOPs with the skills needed to
apply the approaches described above should be a priority
moving forward in supervised academic settings as well as
in government and industry work environments. Early expo-
sure to carbon cycle concepts, interdisciplinary linkages, and
skill building through undergraduate research assistantships
is ideal if accompanied with adequate compensation and
professional development opportunities. Early career re-
searchers should not be expected to become experts in
all the methods outlined throughout this paper, including
community collaboration and engagement (Table 2). Rather,
early career researchers should be given the opportunity to
connect (as part of their research project) to a platform that
enables them to collaborate with other multidisciplinary
researchers, bringing together social scientists, economists,
and Indigenous knowledge keepers. Beyond training, at
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the forefront of recruiting students all the way to research
chairs, the focus should be on increasing equity, diversity,
and inclusion within our field to spark new ideas, solutions,
and perspectives (Osiecka et al. 2022). Fair and equitable
financial support for graduate student and postdoc work
(Laframboise et al. 2023), mental health support, and foster-
ing greater peer-to-peer collaborative opportunities lead to
more diverse, happier, healthier, and more productive labs
(Osiecka et al. 2022). The next generation of ocean scientists
faces significant adversity in informing policy efforts to
meet global net-zero emissions targets while grappling with
past and current injustices around truth and reconciliation
efforts here in Canada. Among this group of ECOPs, there
is consensus on the need for recentering science in future
policy discussions while moving forward with all available
options to combat the climate crisis.
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