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Abstract
A three-dimensional predictive soil mapping approach for predicting soil organic carbon (SOC) stocks (t/ha) at high spatial

resolution (30 m) for Alberta for 2020–2021 is described. A remote sensing data stack was first prepared covering Alberta’s
agricultural lands. A total of 404 sampling locations were distributed across Alberta using 2-scale sampling: (1) 22 pilot farms
representing main climatic zones and (2) conditioned Latin hypercube sampling at each farm. Soil samples were taken at four
standard depths (0–15, 15–30, 30–60, 60–100 cm) using soil probes and analyzed for SOC. Predictive models for SOC content and
bulk density were built separately and then used to predict at 0, 15, 30, 60, and 100 cm and calculate aggregated SOC stocks per
pixel. The SOC content and bulk density models had R squares of 0.61 and 0.68, respectively. Based on these mapping results,
grassland soils were consistently associated with higher SOC stocks across all soil types as compared to croplands. The average
SOC stock increase for grassland soils compared to cropland soils was 2.1 Mg per hectare, ranging from 2.17 to 6.09 Mg per
hectare depending on soil type. Results also showed that >15 % of total SOC stocks were located in subsoil, which was higher
than expected.
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1. Introduction
Soil organic carbon (SOC) is an essential part of the global

carbon cycle, with the pedosphere containing 4.5 times more
carbon than in vegetation (Lal 2022). Despite the importance
of SOC, there is still much uncertainty regarding how much
agricultural soils could sequester SOC from the atmosphere
(Lal et al. 2018; Tifafi et al. 2018). Global SOC stock estimates
vary widely with values ranging from 500 to 3000 Pg, with a
median estimate of 1500 Pg (Scharlemann et al. 2014; Tifafi
et al. 2018). Bai and Cotrufo (2022) estimated that there is an
achievable SOC sequestration potential in global grasslands
of 2.3–7.3 billion tons of carbon dioxide equivalents per year
(CO2e year−1). Given the wide ranges and high uncertainties
of how much SOC there is and what the SOC sequestration
potential may be, there is a need to refine estimates of SOC
stocks, particularly at finer spatial scales.

The agricultural region of the Canadian Province of Alberta
covers approximately 258 000 km2 and currently lacks de-
tailed SOC maps to support SOC monitoring projects (KC et al.
2021). Grassland soils in Alberta are an important carbon
store. Global grassland SOC stocks are estimated at 343 Pg
in the top 1 m, which is higher than forest carbon stocks
(Conant et al. 2017). Proportion of SOC stocks in the top 20 cm
varies by land use type, with 42% of SOC stock in the top 20 cm

in grassland soils compared to 50% for forest soils (Jobbagy
and Jackson 2000; Lal 2022). Conversion of crop to pasture
land has been documented to increase SOC stocks, with con-
version from pasture to crop leading to a loss of SOC (Guo
and Gifford 2002; Lal 2022). However, globally, there contin-
ues to be a conversion of grazing lands to cultivated crops
(Ramankutty et al. 2008). As grasslands represent an impor-
tant store of SOC, improved mapping of grassland and crop-
land SOC stocks is essential for improving carbon estimates
and understanding the effects of land use change on carbon
budgets (KC et al. 2021).

Predictive soil mapping is a tool that can help researchers
and land managers better understand variation of SOC stocks
as a function of soil properties and land use. Predictive soil
mapping has increasingly emerged as a technique to improve
understanding of spatial variation of soil properties (Ellili
et al. 2019; Hengl and MacMillan 2019). Mapping of SOC con-
tent has been completed at a global scale at 250 m (Hengl
et al. 2017; Poggio et al. 2021). Guevara et al. (2020) have also
mapped SOC content at 250 m across Mexico and the Con-
terminous United States. Recently, a finer scale SOC content
map for Canada was generated at 250 m by Sothe et al. (2022),
which is currently the state-of-the-art SOC content map of
Canada to date.
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Given the importance of SOC, and grassland SOC partic-
ularly, and still relatively high uncertainty surrounding SOC
stock estimates, we focused on mapping SOC stocks across Al-
berta’s agricultural region using newly collected soil samples
with consistent measurements. Our main research objectives
were to

(1) produce a high spatial resolution map of the SOC stock
distribution for agricultural land in Alberta,

(2) examine the effect of using more prairie and grassland
specific training data in terms of SOC stock estimates,

(3) compare grassland versus cropland SOC stocks among
different soil types across Alberta’s agricultural region,
and

(4) determine the baseline SOC stocks for cropland and grass-
land soils across Alberta’s agriculture region.

2. Data and methods

2.1. Soil samples and observations
We used two soil data sets for training the predictive soil

mapping models. The first soil data set was a legacy data set:
The Assessment of Environmental Sustainability in Alberta’s
Agricultural Watersheds Project (AESA) Soil Quality Monitor-
ing Project from 1997 to 2001 (Cathcart et al. 2008). This data
set consists of 291 soil samples from 44 sites across a range
of Alberta agricultural soils with SOC and bulk density mea-
surements. AESA can be considered a legacy soil data set for
monitoring SOC changes across Alberta.

The second soil data set (404 sites; 1491 samples), i.e. new
data, was collected specifically for this project using a pre-
defined soil carbon sampling approach. Due to budget limi-
tations and the size of Alberta, instead of trying to recreate
probability sampling across the entire agricultural region of
the province, we used a 2-phase spatial sampling to maximize
the spread of sample locations and minimize the costs: (1) in
the first phase, we used climate, terrain, and lithological pa-
rameters to identify 10 farms across an environmental gradi-
ent, and (2) in the second phase, we allocated sampling sites
within each farm using consistent sampling intensity and
conditioned Latin hypercube sampling (Minasny and McBrat-
ney 2006; Brus 2021) as implemented in the clhs package
in R (Roudier et al. 2012; Roudier 2021) and described in de-
tail at https://opengeohub.github.io/spatial-sampling-ml/. It
is important to note that the 10 farms were selected based
on climate, terrain, and lithological parameters using tacit
knowledge, and potential locations were limited by existing
landowner relationships. Therefore, the entire feature space
may not be adequately covered and future modeling efforts
with more data can improve the mapping results.

Fieldwork for this dataset was conducted in 2019 and 2020
following a consistent sampling protocol using mechanized
soil probes. At each location, a soil sample core was collected
and broken into to the following standard depth increments:
0–15, 15–30, 30–60, and 60–100 cm. Samples from each in-
crement were then analyzed for SOC content by dry com-
bustion (Nelson and Sommers 1983; Roper et al. 2019) using
a Carlo Erba NA 2100 Elemental Analyzer (Carbo Erba Stru-

mentazione, Milan, Italy). Bulk density and coarse fragment
content were also determined during laboratory analysis. The
sampling locations across Alberta are illustrated in Fig. 1.

After laboratory analyses and data entry, all points were
inspected for possible artifacts and gross errors. This was
done by producing two-dimensional (2D) scatter and multi-
variate plots to detect potential outliers. Bulk density was
available for a majority of soil samples. The remaining 10%
of samples with missing values were estimated used a pedo-
transfer function shown in Fig. 2 fitted locally using the AESA
dataset.

Because the AESA SOC data were determined using loss on
ignition and not dry combustion, we harmonized the loss-
on-ignition values to avoid any bias in estimates (Roper et al.
2019). For this we used the formula provided by Jensen et al.
(2018) that accounts for the clay content of soil:

SOC
[
g kg−1] = 0.513 · LOI

[
g kg−1]

−0.047 · CLAY
[
g kg−1] + 0.00025 · CLAY

[
gkg−1]2

(1)

where SOC is soil organic carbon content, LOI is soil organic
carbon loss-on-ignition values, and CLAY is clay content.

2.2. Covariate layers
We focused on mapping SOC at spatial resolutions finer

than recent Canada-wide work (Sothe et al. 2022); hence, we
prepared the covariate layers at spatial resolutions of 30 m.
We prepared 180 covariates that can be grouped roughly into
four themes:

� Climate: we used ClimateNA v7.3 normals for 1990–2010 at
1 km spatial resolution (Mahony et al. 2022), which were ob-
tained from https://adaptwest.databasin.org/pages/adaptw
est-climatena/ and then downscaled using cubic splines for
prediction purposes.

� Relief: we used the Advanced Land Observation Satellite
(ALOS) Digital Terrain Model (DTM) of Alberta at 30 m (Jaxa
2015).Terrain derivatives including standard morphometric
and hydrological parameters at 30, 100, and 250 m spatial
resolution were determined (Behrens et al. 2018).

� Organisms: we used the Moderate Resolution Imaging Spec-
troradiometer (MODIS) Enhanced Vegetation Index (EVI)
long-term composites, PROBA-V Level3 Normalized Differ-
ence Vegetation Index (NDVI) (Wolters et al. 2014) long-
term monthly estimates, and Landsat Analysis Ready Data
(ARD) 25th Percentile (P25), 50th Percentile (P50), and 75th
Percentile (P75) images for spring and summer months
(Potapov et al. 2020; Witjes et al. 2022).

� Parent material: we prepared lithological units for Alberta
based on the Bedrock Topography of Alberta Version 2
(Alberta Geological Survey 2020) downloaded from https://
ags.aer.ca/data-maps-models/data/dig-2020-0022; the units
were converted to indicator maps for (1) colluvial deposits,
(2) eolian deposits, (3) fluvial deposits, (4) glaciofluvial de-
posits, (5) glaciers, (6) lacustrine deposits, (7) glaciolacus-
trine deposits, (8) moraine, (9) fluted moraine, (10) stagnant
ice moraine, (11) ice-thrust moraine, (12) organic deposits,
(13) bedrock, and (14) preglacial fluvial deposits.
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Fig. 1. (a) Landsat short-wave infrared red (SWIR) cloud-free image for Alberta from May to October 2018 to 2020 and (b) soil
sampling locations (training points) for a selected farm. Red triangles are sampling locations collected by the project; yellow
dots indicate legacy Assessment of Environmental Sustainability in Alberta’s Agricultural Watersheds Project points. EPSG:
3402.

Fig. 2. Pedo-transfer function for bulk density estimation using soil SOC content, based on the 1491 soil samples from different
landscapes in Alberta from the second dataset.
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Preparation of the PROBA-V and Landsat long-term com-
posites for recent years (2018–2020) required downloading
the images from the GLAD Landsat ARD Tools (https://glad.u
md.edu/ard/) and then downloading long-term composites for

four seasons (winter, spring, summer, and autumn months),
removing snow cover and gap filling all missing pixels. The 7-
band Landsat images produced a total of 168 GeoTIFFs (4 sea-
sons × 3 percentiles × 7 bands × 2 years) that were then used
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as covariate layers. Detailed processing steps used to derive
Landsat derivatives are available in Witjes et al. (2022).

The rationale for using Landsat time-series composites for
soil property mapping was as follows: although Landsat im-
ages do not penetrate soil and primarily reflect above ground
vegetation (hence can not be used to measure SOC directly),
we believe that by having full multi-year seasonal composites
with three percentiles we can find key correlations among
soil properties and the temporal signature of a pixel. Single-
satellite images of a field can be strongly affected by crop-
rotation effects, which are then reflected on predictions of
soil properties. These crop-rotation effects most likely do not
have anything to do with changes in soil properties, as many
cropping systems’ above ground vegetation changes season-
ally and abruptly with exactly the same soil properties. It is
also important to emphasize that as data were used within
a Machine Learning framework, primarily by fitting complex
decision trees (e.g. Random Forest), each combination of crop
rotation, seasonality, and other relationships that best fit the
training data were determined. This assumption has worked
in previous case studies (Hengl et al. 2021, 2022a), with pre-
dictions not reflecting crop boundaries or similar patterns.

Although finer resolution spectral bands are now available,
primarily thanks to the Sentinel-2 mission (up to 10 m spa-
tial resolution), we focused on using Landsat as the key earth
observation (EO) data for soil property mapping because our
interest is the use of EO data to reconstruct historical SOC
dynamics going back 10, 20, and 30 years.

After we prepared all covariate layers, training points were
overlaid with 250 and 100 m resolution layers (climatic lay-
ers, MODIS LST, geological classes) and 30 m resolution layers
(Landsat GLAD percentiles for bands for 2019 and 2020 digital
terrain parameters) and then combined to produce a regres-
sion matrix with all covariate layers and target variables at
different soil depths.

The whole of Alberta at 30 m as mosaics are images
of 23 144 columns by 41 125 rows in the EPSG:3402–
NAD83(CSRS)/Alberta 10-TM (Forest) coordinate system. The
total data prepared for SOC mapping exceeded 200 GB. This
means that a significant infrastructure is needed to process
these data. Predictions were the most time-consuming task in
the total workflow and were run in a high-performance com-
puting environment (Intel Xeon Gold 6284R with 96 threads
and 378 GB RAM) to avoid RAM limitations and delays.

2.3. 3D Ensemble Machine Learning
We used a three-dimensional (3D) Ensemble Machine

Learning (3D-EML) framework to model spatial distribution
in SOC and soil bulk density as explained in Fig. 3. We first
defined an area of interest (agricultural mask) and prepared a
list of covariate layers representing soil-forming factors (steps
1–3). We then used the covariate layers to design a sampling
design (step 4) based on conditioned Latin hypercube sam-
pling to ensure unbiased representation and minimal extrap-
olation space within the sampled farms (Brus 2021). We next
collected samples on the ground and carried out consistent
laboratory analysis (step 5). The data from the samples were
then quality-controlled and overlaid with covariate layers and

used to build predictive models (steps 6–7) to map SOC con-
tent and bulk density independently (step 8).

After we produced predictions of SOC content and bulk
density at depths 0, 15, 30, 60, and 100 cm, we derived ag-
gregate estimates of the SOC stocks in depth increments of
0–30 cm (top-soil), 30–60 cm (sub-soil1), and 60–100 cm (sub-
soil2) (step 9). The depth-wise estimates were modeled using a
threshold as described in Hengl and MacMillan (2019), where
the values for the 0–30 cm depth interval were split into two
values at 0 and 30 cm. These estimates were then crossed with
the land use and soil type maps for Alberta to produce sum-
maries per combination of classes.

The 3D-EML approach incorporated soil depth as a covari-
ate, which enabled the prediction of a given soil parameter
at any depth. The advantage of this approach over mapping
each depth independently was that the total training data set
could be maximized and variations in depth profiles could
be accounted for in the model (Hengl and MacMillan 2019;
Hengl et al. 2021). A disadvantage of this approach was that
only the depth variable was modified and values of covariates
at various depths were considered to be constant, which was
a gross assumption. Ma et al. (2021) compared the 3D predic-
tive soil mapping with 2D approaches, including a combina-
tion with spline fitting of soil horizons and showed that 3D
mapping produced comparable accuracy and was easier to
implement as compared to 2D approaches that include mul-
tiple additional steps such as spline fitting/gap filling.

Ensemble predictions were based on stacking three inde-
pendently fitted models (Hengl et al. 2022a):

(1) ranger: fully scalable implementation of Random Forest
(Wright and Ziegler 2017),

(2) XGboost: extreme gradient boosting (Chen and Guestrin
2016), and

(3) glmnet: GLM with Lasso or Elasticnet Regularization
(Friedman et al. 2020).

We ran model fitting and prediction in four phases, as im-
plemented in the mlr framework for Machine Learning in R
(Bischl et al. 2016). Standard four modeling steps included

(1) Hyper-parameters fine-tuning: we first determined mtry
for ranger and XGBoost parameters by iterative fine-
tuning;

(2) Feature selection: we subset covariates using random fea-
ture selection in mlr, which usually removes 30%–40% of
covariates;

(3) Stacking: we used 5-fold cross-validation with spatial
blocking (5 × 5 km) to generate a meta-learner;

(4) After the model fitting, we produced predictions and es-
timated the prediction errors (per pixel) by first fitting
a quantile regression RF model using three learners and
then derived root mean square percentage error per pixel
using the forestError package (Lu and Hardin 2021).

We used EML rather than a single learner (e.g. Random
Forest) for two main reasons: (1) it is a remedy for poten-
tial over-fitting and (2) in the case of variables with skewed
distributions, it helps reduce overshooting effects (Hengl
et al.2022a, 2022b). In the case of spatially clustered samples

FA
C

E
T

S 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.f
ac

et
sj

ou
rn

al
.c

om
 b

y 
3.

14
2.

13
0.

25
0 

on
 0

5/
15

/2
4

http://dx.doi.org/10.1139/facets-2023-0040


Canadian Science Publishing

FACETS 8: 1–17 (2023) | dx.doi.org/10.1139/facets-2023-0040 5

Fig. 3. The 10-step general predictive soil mapping scheme used to generate SOC stock estimates for Alberta’s agricultural soils
based on 3D Ensemble Machine Learning (3D-EML). See the text for more details.

(this study also), spatial blocking (i.e. spatial cross-validation)
during model training helped reduce potential over-fitting
that can be significant (Gasch et al. 2015; Schratz et al. 2019).
When points are based on probability sampling and regularly
distributed across areas of interest, spatial cross-validation
has produced over-pessimistic estimates of mapping accuracy
(Wadoux et al. 2021). In our case, because sampling points
were clustered around selected farms, we needed to use spa-
tial blocking (with 30 km tiles) during model training to pre-
vent overfitting. Also, we assumed that to get a realistic esti-
mate of the mapping accuracy for the whole of Alberta, we
removed whole farms from training/validation.

Note also that we modeled the log-transformed variable for
SOC and coarse fragments (both follow log-normal distribu-
tion) and then back-transformed after modeling. The ratio-
nale to work with the log-transformed variable is as follows:
first, by log-transforming the target variable, we reduced the
effect of very large SOC concentrations (e.g. high SOC in wet-

lands and similar areas that might result in low values being
over-estimated); secondly, for the log-transformed variable,
which then showed close to normal distribution, it was easier
to interpret the root mean square error (RMSE) and visualize
results.

2.4. Derivation of soil carbon stocks
Our main objective was to map SOC stocks in t/ha and not

only SOC content. In principle, in predictive soil mapping,
there are three main ways to derive SOC stocks from soil sam-
ples (Hengl and MacMillan 2019):

(1) The 2D approach: estimate SOC stocks in t/ha for fixed
depths, e.g., 0–30 cm, and then model and predict stocks
or estimate SOC content and bulk density for each depth
separately and combine to estimate total SOC stock.

(2) The 3D uni-variate approach: estimate SOC density in
kg/m3 for each soil depth (training samples) and then
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Fig. 4. Example of how SOC stocks were derived using actual laboratory results from two sites: (a) TKRH-001A at
Lat = 51.9506089, Lon = −111.448143 and (b) TBSH-042 at Lat = 49.9480703 and Lon =−111.964013.

predict in 3D and aggregate to standard depth intervals
(Sanderman et al. 2018).

(3) The 3D multivariate approach: model and predict SOC
content (g/kg), bulk density (kg/m3), and coarse fragments
(dg/kg) independently in 3D and then aggregate to stan-
dard depth intervals and derive SOC stocks in t/ha.

In this paper, we used a 3D multivariate approach as it en-
ables relationships among soil properties and soil depth to be
explicitly captured in the model. We derived SOC stocks from
independently modeled and predicted SOC content (g/kg),
bulk density of the fine earth fraction (kg/m3), and coarse
fragments (dg/kg). After we produced maps for 3 soil variables
at 5 depths (0, 15, 30, 60, and 100 cm), we aggregated values
to standard depth intervals 0–30 cm and 30–100 cm and then
derived SOC stocks for every pixel, including the uncertainty
expressed as prediction error maps.

The SOC stocks in t/ha were derived using Nelson and Som-
mers (1983):

OCS
[
t ha−1] = 10 · OCS

[
kg m−2]

= 10 · ORC
1000

[
kg kg−1] · HOT

100
[m]

·BLD
[
kg m−3] · 100 − CRF [%]

100

(2)

where OCS was soil organic carbon stock, ORC was soil or-
ganic carbon mass fraction in permilles, HOT was horizon

thickness in m, BLD was soil bulk density in kg/m3, and CRF
was volumetric fraction of coarse fragments (>2 mm) in per-
cent (Fig. 4).

The uncertainty of estimating SOC stocks in t/ha for a 3D
multivariate approach can be derived using composite pre-
diction errors (Hengl et al. 2014):

σOCS = 1
10, 000, 000

· HOT · (
BLD2 · (100 − CRF)2

·σ 2
ORC + σ 2

BLD · (100 − CRF)2 · ORC2

+ BLD2 · σ 2
CRF · ORC2)− 1

2

(3)

where σORC, σBLD, and σCRF are standard deviations of
the predicted soil organic carbon content, bulk density, and
coarse fragments (i.e. prediction errors), respectively.

2.5. Model validation
To validate accuracy of predicting SOC and bulk density, we

used pseudo-probability samples (20% of total samples) and
repeated model refitting as explained in Hengl et al. (2022b).
This pseudo-probability resampling involved randomly sub-
sampling the dataset while ensuring that all points used for
validation were a minimum distance apart to get a better es-
timate of realistic map accuracy. Pseudo-probability resam-
pling ensured that (a) spatial clustering was minimized and
(b) spatial density of validation samples was constant. In prac-
tice this also means that whole soil sites are taken from train-
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ing data and used for validation and that less clustered (rel-
atively isolated) samples have a somewhat higher chance of
being selected repeatedly.

We repeated the cross-validation process 5 times, with
30 km block sizes where all points within a block were with-
held for use as validation data, and then derived average met-
rics per property. This procedure was only used for cross-
validation, i.e., to determine the most realistic estimate of
model performance: R square, RMSE, and Lin’s Concordance
Correlation Coefficient (CCC) (Steichen and Cox 2002).

2.6. SOC aggregation per land use and soil type
Following development of the predictive soil maps for SOC

stocks to a depth of 1 m, the resulting data were used to as-
sess the influence of land use and soil type on SOC stocks
in Alberta’s agricultural region. To assess SOC stocks by soil
type, soil type polygons from the Agricultural Regions of Al-
berta Soil Inventory Database were used (Brierley et al. 2001).
Land use was determined based on the Agriculture and Agri-
food Canada Annual Space-Based Crop Inventory for Canada
(Government of Alberta 2022).

Soil types were assessed at the order level following the
Canadian System of Soil Classification (CSSC), except for
Chernozemic soils that were assessed at the great group level
to account for the large climatic gradient that influences SOC
stocks for Chernozems in Alberta. Solonetzic soils were also
separated by the Brown, Dark Brown, and Black subgroups to
account for this same climate gradient. The categories were
as follows, according to the CSSC (Soil Classification Work-
ing Group 1998) (with the World Reference Base classifica-
tions in brackets (IUSS Working Group WRB 2014)): Brown
Solonetz (Solonetz), Brown Chernozem (Kastanozem aridic),
Black Solonetz (Solonetz), Black Chernozem (Chernozem),
Brunisol (Cambisol), Dark Brown Solonetz (Solonetz), Dark
Brown Chernozem (Kastanozem Haplic), Dark Gray Cher-
nozem (Greyzem), Gleysol (Gleysol), and Gray Luvisol (Albic
Luvisol). An important feature to note is that Gleysols are
known to have high carbon stores (Euliss et al. 2006), but they
are distributed across all soil zones, so the values for this soil
order were averaged across the climate gradient. Addition-
ally, Gleysols are not extensively mapped as dominant soils
in Alberta and many soil polygons contain Gleysols as minor
soils.

Total SOC stocks from 0 to 100 cm were calculated for land
use categories of forested, cropland, grassland, shrubland,
and wetland (Table 1). The forested land use category included
conifer and broadleaf classes, cropland included all annual
crop types, and grasslands included grassland, pastures, and
forage land. SOC stocks from 0 to 100 cm, as a function of
cropland and grassland land use categories, along with soil
types, were then compared using a generalized least squares
model with the nlme package in R (Pinheiro 2021). The inter-
action between soil type and land use type was tested, and it
was significant (p < 0.01). Assessment of other land use classes
was not examined with the generalized least squares model
to simplify the results and because the vast majority of the
training data came from cropland and grassland land use
types.

Table 1. Soil organic carbon stocks from 0 to 100 cm in
Alberta’s Agricultural Region per Agriculture and Agri-Food
Canada Annual Crop Inventory land use types (Fisette et al.
2014).

Land use type
Soil organic carbon

stocks (Mg ha−1)

Forested 120.5

Cropland 83.3

Grassland, pastures, and forageland 90.3

Shrubland 106.2

Wetland 103.5

Note: Annual crop land use types have been aggregated into a single cropland
category.

3. Results

3.1. Variable importance and accuracy
assessment

The results of model building using mlr showed contri-
butions by different learners and variable importance based
on the Random Forest feature selection. For modeling SOC
content, all three algorithms were significant for predicting,
and the stacking was thus highly efficient. The spatial cross-
validation results for the final model had an R2 of 0.61 and
CCC of 0.754 for SOC (see Fig. 5): Overall, Random Forest
(Wright and Ziegler 2017) was the best learner, followed by
Xgboost Chen et al. (2020) and Lasso and Elastic-Net Regular-
ized Generalized Linear Models (regr.cvglmnet) (Friedman
et al. 2020).

While all three learners were significant, it is important to
note that the p value reached by the Random Forest compo-
nent learner during the stacking was three orders of magni-
tude lower than the Xgboost component learner and six or-
ders of magnitude lower than the Lasso and Elastic-Net com-
ponent learner. A similar behavior was observed for the bulk
density ensemble model: spatial cross-validation results re-
ported an R2 of 0.68, RMSE of 0.21 g cm3, and CCC of 0.808,
with Random Forest still performing as the best component
learner, Xgboost as the second most important, and Lasso
and Elastic-Net as the least important.

Even in this case, all three learners were significant but
contrary to the SOC ensemble model. During the stacking
for the bulk density model, the p value reached by the Ran-
dom Forest component was only 1 order of magnitude lower
than the Xgboost component learner and 16 times lower
than the Lasso and Elastic-Net component. The variable im-
portance analysis extracted from the Random Forest compo-
nent showed that the top 10 most important covariates for
mapping SOC and bulk density were similar (see Fig. 6): In
both cases, soil depth was the most important covariate, with
elevation the second most important for bulk density and the
third most important for the SOC content.

The precipitation-related climate normals had the high-
est variable importance, with the cumulative precipitation
of spring and fall being the most important ones for SOC
content, while the precipitation for the month of June and
the cumulative precipitation of fall being the most important
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Fig. 5. Model performance results for soil organic carbon concentration and bulk density, by 5-fold cross-validation with
refitting.

Fig. 6. Top 10 variable importance results for soil organic carbon concentration and bulk density. Precipitation is abbreviated
as PPT, SHM is the Summer Heat Moisture Index, DD_18 is the degree days below 18, MSP is Mean Summer Precipitation,
SWIR2 is the Landsat Shortwave Infrared 2 band, and EMT is the extreme minimum temperature over the last 30 years.
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Fig. 7. Map showing predicted soil organic carbon (SOC) content at three standard depth intervals (a) with a zoom-in on two
specific areas: (b) grasslands with relatively high SOC content, even at higher soil depth, and (c) agricultural land with an
average SOC content of 1.2% for 0–30 cm depth. EPSG: 3402.

for bulk density. The night temperatures recorded by MODIS
LST were also included among the top 10 covariates but in
quite different positions, together with mean summer pre-
cipitation. Consequently, when displaying predictions for the
whole province, patterns of high to low SOC content primar-
ily follow climate gradients (Fig. 7).

The SOC model however considered the Summer Heat
Moisture index and the degree days below 18 ◦C (DD_18) as
relevant, while the bulk density model didn’t consider those
variables as important; on the other hand, the bulk density
model considered the surface geological class Organic Deposits
and the extreme minimum temperature over the last 30 years
as important. Those variables were not identified as such for
mapping SOC content. Overall, the results showed that SOC
content, bulk density, and coarse fragments can be success-
fully mapped.

3.2. Comparison of predictions with previous
maps

In the resulting predictive soil maps, SOC concentrations
ranged (1st to 99th percentiles) from 0.4% to 6.1% for 0 to
30 cm, 0.2% to 2.8% for 30 to 60 cm, and 0% to 1.6% from 60 to
100 cm. SOC stocks ranged (1st to 99th percentiles) from 12 to
167 Mg ha−1 for 0 to 30 cm, 8 to 112 Mg ha−1 for 30 to 60 cm,

0 to 92 Mg ha−1 for 60 to 100 cm, and 20 to 364 Mg ha−1 for 0
to 100 cm. In both cases, a climatic trend of increasing SOC
northward and westward was observed, driven by greater net
precipitation.

Our laboratory results and results of modeling indicated
that the predictions by Sothe et al. (2022) over-estimated the
SOC content by 2× the actual values in some cases for Al-
berta agricultural soils (Fig. 8). The predictions in Sothe et al.
(2022) over-estimated SOC concentrations by an average of
15.9 g kg−1 (Fig. 9). Locations in this study had an average SOC
content of 27.5 g kg−1 compared to an average of 43.4 g kg−1

in Sothe et al. (2022), which is an overestimate of about 1.5–2
times. By comparison, the SoilGrids 250 m data (Hengl et al.
2017) underestimated SOC content by an average amount of
7.4 g kg−1, particularly for samples with higher SOC contents
(Fig. 9). For comparison purposes, the soil depths for the Soil-
Grids data was splined in 1 cm intervals from 0 to 30 cm, and
the average value for 0 to 30 cm was then calculated.

3.3. Soil organic carbon stocks per land use
In terms of overall SOC stocks, grasslands had signifi-

cantly higher SOC stocks (0 to 100 cm), with an average
of 90.3 Mg ha−1, compared to croplands with 83.3 Mg ha−1

(Table 1). Forests, shrublands, and wetlands all had signifi-

FA
C

E
T

S 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.f
ac

et
sj

ou
rn

al
.c

om
 b

y 
3.

14
2.

13
0.

25
0 

on
 0

5/
15

/2
4

http://dx.doi.org/10.1139/facets-2023-0040


Canadian Science Publishing

10 FACETS 8: 1–17 (2023) | dx.doi.org/10.1139/facets-2023-0040

Fig. 8. Comparison of predictions of SOC content in g kg−1 for 0–30 cm in this study (a) vs. the predictions by Sothe et al. (2022)
(b). To visualize all predictions, visit https://g3w.soils.app/en/map/alberta-soil-carbon/. EPSG: 3402.

cantly higher SOC stocks compared to grasslands and crop-
lands. However, these land uses represent a smaller propor-
tion of land uses compared to grasslands and croplands in
Alberta’s agricultural region. Previous efforts estimated Al-
berta’s total agricultural SOC stocks to 1 m at 0.824 Pg (Bhatti
et al. 2002). Significant carbon stocks are present in the bo-
real forest region of Alberta (Bhatti et al. 2002); however, the
majority of this region is outside the scope of the study. The
value for wetlands also needs to be interpreted with caution
since the 30 m pixel size for the land use maps (Agriculture
and Agri-Food Canada 2020) means that wetlands less than

900 m2 were accounted for in the grassland or cropland cat-
egories and not in the wetland category. Previous work has
documented SOC stocks in wetlands to be approximately
twice as much as no-till cropland (Euliss et al. 2006).

In summary, there was significant variability of SOC stocks
within land use and soil type categories (Fig. 10), with Dark
Gray Chernozems having the highest SOC stocks, followed
by Black Chernozems. Brown Solonetz and Brown Cher-
nozems had the lowest SOC stocks (Fig. 10). Overall, the ma-
jority of soil types had higher SOC stocks for grassland soils
compared to cropland soils, with the exception of Brown
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Fig. 9. Comparison of training data for SOC in g kg−1 for 0–30 cm in this study vs. (a) the predictions by Sothe et al. (2022)
and (b) SoilGrids predictions. This shows that most of the values predicted by Sothe et al. (2022) are systematically higher, on
average by 1.5–2 times. Predictions from SoilGrids were systematically lower at higher concentrations.
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Fig. 10. Average soil organic carbon stocks for Alberta’s Agricultural Region for 0 to 100 cm for croplands and pasture/forage
land by soil type. The soil types are B.SZ——Brown Solonetz (Solonetz), BC——Brown Chernozem (Kastanozem aridic), BL.SZ——Black
Solonetz (Solonetz), BLC——Black Chernozem (Chernozem), BR——Brunisol (Cambisol), DB.SZ——Dark Brown Solonetz (Solonetz),
DBC——Dark Brown Chernozem (Kastanozem Haplic), DGC——Dark Gray Chernozem (Greyzem), GL——Gleysol (Gleysol), LU——
Luvisol (Albic Luvisol).

Chernozems and Dark Brown Solonetzic soils (Table 2).
Where an effect was present, the average increase was
2.1 Mg ha−1, with values ranging from 2.17 Mg ha−1 for Dark
Brown Chernozems to 6.09 Mg ha−1 for Brunisolic soils
(Table 2). Generally, greater increases in SOC stocks from
grasslands occurred where net precipitation was higher
(Hogg 1997). The standard land management unit in Alberta
is a quarter section, which is equal to 64.75 ha. For a quar-
ter section, grassland soils had 139–394 Mg of SOC more
than cropland soils, depending on soil type, based on our
model.

The Dark Brown Solonetzic soils had higher SOC stocks
than Dark Brown Chernozems, which was unexpected. This
could be due to the Dark Brown Solonetzic soils having a
higher proportion of land as grassland compared to Dark
Brown Chernozems. While there was no grassland effect for
Dark Brown Solonetzic soils, grasslands were associated with
higher SOC in the Dark Brown Chernozems. It is notable that
the SOC stocks below 30 cm made up a relatively higher pro-
portion of the total SOC stocks (Fig. 11). The increased SOC
stocks associated with grassland soils were also generally ob-
served at the 0–30 and 30–60 cm depths (Fig. 11).

Overall, the fraction of SOC stocks in the upper 30 cm
ranged from 43% to 47%, with an average of 46% across soil
types (Fig. 11). These results are comparable to grassland soil
carbon stocks in Great Britain that were estimated to contain
more than 60% of their carbon below 30 cm (Ward et al. 2016).

The stocks of SOC in a re-established grassland in the Cana-
dian Prairie province of Manitoba by comparison had 40% of
its carbon in the top 30 cm, compared to SOC stocks to 120 cm
(Bell et al. 2012). Overall, this work further supports the in-
clusion of deeper soil horizons as part of SOC stock assess-
ments, particularly in grasslands, and subsoil horizons need
to be considered as part of global SOC cycles (Rumpel and
Kögel-Knabner 2011).

4. Discussion

4.1. Accuracy levels and key explanatory
variables

One of the advantages of this study is that a majority of
training points used to determine SOC stocks were based on
a systematic survey by a single team with robust mechanical
instruments. In addition, we used an excessive list of covari-
ate layers at high spatial resolution, closely matching sam-
pling locations determined with high spatial accuracy (lo-
cation RMSE < 10 m). Consequently, the results of accuracy
assessment using multi-fold cross-validation with careful sub-
sampling of training points showed that the models were sig-
nificant with CCC at 0.754 and 0.888 for log-SOC and bulk
density, respectively (Fig. 5), with no significant over- or un-
derestimation of values. This gave us confidence to use these
models to produce predictions for Alberta’s agricultural land
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Table 2. Generalized least squares results for assessment of soil organic stocks as a function of land use, specifically cropland
compared with grassland/pasture/forage land (grassland), and soil type.

Parameter Model coefficient Standard error t value p value

(Intercept) 23.21 0.25 93.47 0

Brown Chernozem (Kastanozem aridic) 1.50 0.28 5.37 0

Dark Brown Solonetz (Solonetz) 21.45 0.36 59.42 0

Dark Brown Chernozem (Kastanozem Haplic) 18.21 0.27 66.63 0

Black Solonetz (Solonetz) 41.25 0.35 116.59 0

Black Chernozem (Chernozem) 50.57 0.27 188.71 0

Dark Gray Chernozem (Greyzem) 53.33 0.35 154.34 0

Gray Luvisol (Albic Luvisol) 44.24 0.27 161.11 0

Brunisol (Cambisol) 42.10 0.55 76.00 0

Gleysol (Gleysol) 39.19 0.28 141.69 0

Grassland 2.13 0.415 5.14 0

Brown Chernozem: Grassland 0.93 0.48 1.94 0.05

Dark Brown Solonetz: Grassland 0.51 0.62 0.82 0.41

Dark Brown Chernozem: Grassland 2.17 0.47 4.64 0

Black Solonetz: Grassland 2.51 0.62 4.08 0

Black Chernozem: Grassland 3.41 0.45 7.52 0

Dark Gray Chernozem: Grassland 5.43 0.59 9.25 0

Gray Luvisol: Grassland 4.88 0.46 10.59 0

Brunisol: Grassland 6.09 0.85 7.19 0

Gleysol: Grassland 4.15 0.47 8.88 0

Note: A significant interaction (p < 0.01) was present among soil type and land use. Soil types are listed according to the Canadian System of Soil Classification with the
closest corresponding World Reference Base classification in brackets. The intercept contains the cropland and the Brown Solonetz (Solonetz) factors.

at a spatial resolution of 30 m (maps available at https://g3w.
soils.app/en/map/alberta-soil-carbon/).

The results of laboratory analyses and modeling (surpris-
ingly) showed that >15% of total SOC stocks were located
in sub-soil (deeper than >30 cm), which was deeper than ex-
pected. Soil scientists usually expect that SOC content drops
exponentially with soil depth (following a log-log model),
but it appears that, because Alberta has significant areas un-
der grasslands/pastureland, a large stock of SOC is located at
>30 cm and should not be ignored.

4.2. Large discrepancies in the baseline SOC
stock between previous and this study

Predictive soil mapping efforts focused on the Canadian
prairies have so far been limited. Recent Canada-wide work
at a spatial scale of 250 m has included the Canadian Prairies;
however, much of the training data were more heavily
weighted to Canada’s forested regions (Sothe et al. 2021,
2022). Mapping of historical topsoil SOC has been completed
in the neighboring province of Saskatchewan at resolutions
finer than 250 m (Sorenson et al. 2021), but SOC stocks have
not been previously mapped at resolutions finer than 250 m
in Alberta.

Our predictions indicated that the results from Sothe et al.
(2022) most likely over-estimate SOC stocks for Alberta (Fig. 9)
and possibly large parts of Canada. We can only speculate as
to why the predictions produced by Sothe et al. (2022) were
biased high compared to the laboratory data in this study. A
likely explanation is that training points used by Sothe et al.
(2022) over-represented forest areas and wetlands, which are

typically richer in SOC. Our results consistently showed that
for most farms in this study, Alberta SOC stocks range from
30 to 120 Mg ha−1 (0–30 cm). Another possible explanation is
that the loss on ignition data in the Sothe et al. (2022) train-
ing data may over-estimate carbon concentrations (Jensen
et al. 2018). Using the Sothe et al. (2022) results underesti-
mates the potential for Alberta soils to sequester carbon. This
highlights the need for an updated soil carbon database in
Canada, collected across Canada’s major physiographic re-
gions using current laboratory methods to generate accurate
and up-to-date SOC maps.

4.3. SOC stocks per main land cover
The higher SOC stocks in grassland soils are corroborated

by other studies that have documented increased SOC stocks
when land is converted to perennial crops. Converting crop to
pasture was associated with an increase of 19% in SOC stocks
in Australia and the USA (Guo and Gifford 2002). However,
grassland versus cropland SOC stock comparisons have been
limited in the Canadian Prairies. Changes in SOC stocks of 3–
14 Mg ha−1 were observed after converting from arable crop-
land to perennial crops in Alberta over a 13–25-year time pe-
riod (VandenBygaart et al. 2010). Re-establishment of peren-
nial vegetation led to SOC stock gains of 6.8 Mg ha−1 in east
central Saskatchewan (Mensah et al. 2003). Both of these stud-
ies focused on specific research sites rather than monitoring
changes over extensive areas. An important factor to note is
that confounding factors, such as soil texture, were not as-
sessed in this study. Grasslands in Alberta would on average
be expected to have coarser textured soils, as finer textured
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Fig. 11. Average soil organic carbon stock depth profiles for Alberta’s Agricultural Region for 0 to 100 cm by depth for crop-
lands and pasture/forage land by soil type. Soil types are Brown Solonetz (Solonetz), Brown Chernozem (Kastanozem aridic),
Black Solonetz (Solonetz), Black Chernozem (Chernozem), Brunisol (Cambisol), Dark Brown Solonetz (Solonetz), Dark Brown
Chernozem (Kastanozem Haplic), Dark Gray Chernozem (Greyzem), and Luvisol (Albic Luvisol).
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soils were preferentially cultivated for arable crops histori-
cally in the Canadian Prairies.

In general, the results of our study showed lower SOC
contents compared to Sothe et al. (2022). For the prairies,
their study had average SOC contents of 57.2 g kg−1 at 0 cm,
49.3 g kg−1 at 5 cm, 28.2 g kg−1 at 15 cm, 17.78 g kg−1 at 30 cm,
and 11.7 g kg−1 at 60–100 cm. In contrast, data from our study
(excluding one site with organic soils) had average SOC val-
ues of 36.5 g kg−1 from 0 to 15 cm, 18.8 g kg−1 from 15 to
30 cm, 11.1 g kg−1 from 30 to 60 cm, and 6.0 g kg−1 from 60
to 100 cm.

5. Conclusion
This study represents the most up-to-date and finest spatial

resolution SOC stock maps for the Canadian Province of Al-
berta. The results of this study indicated Alberta’s grasslands
have greater stores of SOC stocks than croplands, and this
work highlights the importance of grassland soils as a store of
carbon. Across most soil types in Alberta, grasslands showed
consistent increases in SOC stocks compared to croplands,
particularly in soil types associated with higher net precipi-
tation. Previous national estimates by Sothe et al. (2021) sig-
nificantly over-estimate SOC stocks for agricultural land in
Alberta, which might be due to the spatial resolution and/or
bias in the training points used representing mainly forest
soils. Overall, the lower SOC contents in this study compared
to recent Canada-wide mapping indicate that improved and
updated soil databases are essential for accurate SOC stock
estimates in Canada. The next steps for this work is to obtain
enough finer resolution imagery to test mapping at scales
finer than 30 m and to test algorithms for mapping SOC in
a space–time domain as a dynamic phenomena.
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