Supplementary Materials

Supplementary Table 1: Sampling stations. Location, date, and number of salmon processed at sampling stations during the Gulf of Alaska winter expedition.

Supplementary Table 2. Novel putative viral contigs discovered through metatranscriptomic sequencing

Supplementary Table 3: Infectious agent prevalences in the Gulf of Alaska winter 2019

Supplementary Table 4. Changes in oceanographic variables experienced by salmon. Maximal and mean changes in oceanographic variables between sampling stations were calculated per km and in percent. Then, the values were multiplied by the daily net distance travel of 15.1 km of salmon in the area to derive the daily changes per variable experienced by the salmon:

0.795 body length s⁻¹ (average speed) * 0.529 (gross to net distance conversion) * 415mm (mean length of salmon in study) * 24h = 15.1 km. Swim speed and conversion factor are based on Ogura and Ishida, 1992 and 1995. See Table 3 for abbreviations.

Supplementary Figure 1: Survey locations and salmon catches during the 2019 Gulf of Alaska Expedition. Locations where no salmon were caught are denoted by "x".

Supplementary Figure 2: Fish health samples from all species were taken from salmon that are representative subsamples (blue: "Fish_health") of all salmon (red: "All") caught during the 2019 Gulf of Alaska expedition. Fulton's body condition factor K of salmon caught during the 2019 Gulf of Alaska expedition.

Supplementary Figure 3: Number of infectious agents and pathogens (A) and Shannon Weaver diversity (B) of infectious agents and pathogens by species. n(chum) = 84, n(coho) = 80, n(pink) = 27, n(sockeye) = 61.

Supplementary Figure 4: Histopathology of high load individuals from the GoA for *Ichthyophonus hoferi and Loma* sp.. (a): Coho salmon heart: multiple granulomatous

inflammatory foci due to *I. hoferi* infection (arrows), localized in all the compartments of the heart. (H&E - Scale bar 500 μ m). (b): Coho salmon heart: same field as (a). *I. hoferi* marked by ISH (red) inside the granulomata observed in the heart. (ISH - Scale bar 500 μ m). (c): Sockeye gills: *Loma* sp. xenoma (arrow). (H&E - Scale bar 100 μ m). (d): Coho gills: *Loma* sp. xenomas (arrows). (H&E - Scale bar 100 μ m)

Supplementary Figure 5: Statistically significant covaried metadata with gene expression clusters in chum salmon. Covariance was tested with anova and differences between groups was assessed with t-test (p< 1e-04: "****", p< 0.001:"***", p<0.01:"**", p<0.05:"*").

Supplementary Figure 6: Statistically significant covaried metadata with gene expression clusters in sockeye salmon. Covariance was tested with anova and differences between groups was assessed with t-test (p< 1e-04: "***", p< 0.001:"***", p<0.01:"**", p<0.05:"*").

Supplementary Figure 7: Statistically significant covaried metadata with gene expression clusters in coho salmon. Covariance was tested with anova and differences between groups was assessed with t-test (p < 1e-04: "****", p < 0.001:"***", p < 0.01:"**", p < 0.05:"*").

Supplementary Figure 8: Statistically significant covaried metadata with gene expression clusters in pink salmon. Covariance was tested with anova and differences between groups was assessed with t-test (p< 1e-04: "****", p< 0.001:"***", p<0.01:"**", p<0.05:"*").

Supplementary Figure 9: Gene expression analysis of salmon captured in the Gulf of Alaska during the winter 2019. (a), (b): chum, (c), (d): sockeye, (e), (f): coho, (g), (h): pink. PCA plot of gene expression is overlaid with meta-data (infectious agents, intrinsic variables, and environmental metadata). Dots depict individual salmon. Vectors show superimposed data correlating with differential gene expression. Only data with a correlation significance of p < 0.05 are shown. Gene names depict the top 20% of genes for ordination (italics) and top 20% of genes correlating with superimposed data (bold). Biomarker panel is indicated by the color of the gene acronym. For a full list of all genes and corresponding factors see Table 1 and 2.

Supplementary Figure 10: Spatial correlation of mean relative infection burden (RIB) at site of capture with temperature and primary prey of salmon species in the Gulf of Alaska during the winter 2019.

Supplementary Figure 11: Changes in oceanographic variables experienced by salmon. Observed oceanographic gradients across the study area with circles around the sampling sites indicating the area the samples salmon could have travelled from within the past 24h based on data by Ogura and Ishida, 1992 and 1995. Radius of the circle is 15.1km and represents the net 24h travel distance of salmon in the study area.

Supplementary materials: Histopathology

			ne Gulf of Ala		-		Chum
Station	Lat	Long	Date	Sockeye	Pink	Coho	Chum
1	48.4	-128.5	19-Feb-19	0	0	0	0
2	48.4	-130	19-Feb-19	0	0	0	0
3	47.4	-137	21-Feb-19	0	1	1	0
4	47.4	-138.5	22-Feb-19	0	8	0	0
5	47.4	-140	22-Feb-19	0	0	6	2
6	47.4	-141.5	23-Feb-19	0	3	0	2
7	47.4	-143	23-Feb-19	0	0	0	0
8	47.4	-144.5	24-Feb-19	0	0	10	0
9	47.4	-146	24-Feb-19	0	0	0	1
10	47.4	-147.5	24-Feb-19	0	0	4	1
11	48.4	-147.5	25-Feb-19	6	0	2	1
12	49.4	-147.5	25-Feb-19	1	0	0	2
13	50.4	-147.5	25-Feb-19	1	0	0	1
14	51.4	-147.5	26-Feb-19	0	0	1	0
15	52.4	-147.5	26-Feb-19	0	0	1	0
16	53.4	-147.5	26-Feb-19	6	0	0	2
17	54.4	-147.5	27-Feb-19	1	0	0	2
18	55.4	-147.5	27-Feb-19	0	0	0	0
19	56.4	-147.5	28-Feb-19	0	0	0	1
20	56.4	-146	28-Feb-19	0	0	0	0
21	56.4	-144.5	28-Feb-19	0	0	0	0
22	56.4	-143	28-Feb-19	10	0	0	0
23	55.4	-143	01-Mar-19	0	0	0	1
24	55.4	-144.5	01-Mar-19	0	0	1	0
25	55.4	-146	01-Mar-19	9	0	0	1
26	54.4	-146	02-Mar-19	2	0	0	2
27	53.4	-146	02-Mar-19	4	0	0	2
28	52.4	-146	02-Mar-19	2	0	0	2
29	51.4	-146	03-Mar-19	0	0	0	4
30	50.4	-146	03-Mar-19	0	0	0	9
31	49.4	-146	03-Mar-19	0	0	4	3
32	48.4	-146	04-Mar-19	0	5	2	3
33	48.4	-144.5	04-Mar-19	0	5	5	0
34	49.4	-144.5	04-Mar-19	4	1	0	2
35	50.4	-144.5	05-Mar-19	0	1	0	9
36	51.4	-144.5	05-Mar-19	0	1	0	8
37	52.4	-144.5	05-Mar-19	6	0	1	1
38	53.4	-144.5	06-Mar-19	0	0	0	4
39	54.4	-144.5	06-Mar-19	0	0	0	1
40	54.4	-143	06-Mar-19	1	0	0	0

Supplementary Table 1: Sampling stations. Location, date, and number of salmon processed at sampling stations during the Gulf of Alaska winter expedition.

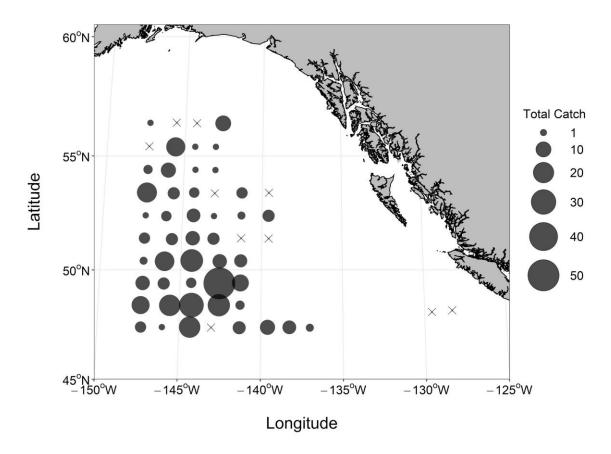
41	53.4	-143	07-Mar-19	0	0	0	0
42	52.4	-143	07-Mar-19	0	0	0	1
43	51.4	-143	07-Mar-19	0	0	2	4
44	50.4	-143	08-Mar-19	0	0	0	9
45	49.4	-143	08-Mar-19	0	2	7	0
46	48.4	-143	09-Mar-19	1	0	9	0
47	48.4	-141.5	09-Mar-19	0	0	3	0
48	49.4	-141.5	09-Mar-19	1	0	10	0
49	50.4	-141.5	10-Mar-19	1	0	6	0
50	51.4	-141.5	10-Mar-19	0	0	0	0
51	52.4	-141.5	10-Mar-19	0	0	2	0
52	53.4	-141.5	11-Mar-19	3	0	1	1
53	53.4	-140	11-Mar-19	0	0	0	0
54	52.4	-140	12-Mar-19	5	0	1	0
55	51.4	-140	12-Mar-19	0	0	0	0
56	50.4	-140	13-Mar-19	0	0	0	0
57	50.4	-138.5	13-Mar-19	0	0	0	0
58	49.4	-138.5	14-Mar-19	0	0	0	0
59	48.4	-138.5	14-Mar-19	0	0	0	0
60	48.4	-137	15-Mar-19	0	0	0	0

Supplementary Table 2. Novel putative viral contigs discovered through metatranscriptomic sequencing

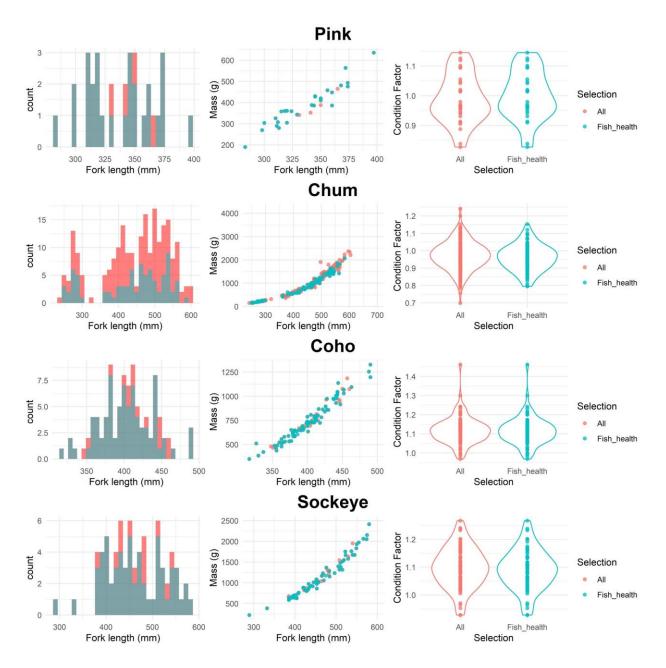
Putative virus name	Assay name	Host of sequencin g library	Contig for which assay was designed	Genbank accession of contig	Top Blast hit	Amino acid identity
Putative bafini virus	Bafini_b	Chinook	TCTTGTGTTTGATTTGCATCATACTTAGAAAATGTTGAA GGATCAGTGGGTTGGTCACATTCATCGAAGAGAGATGT TCTAGTGATAATGCCGACTGAAGTTGGCATTTTGTCACA TGAATGAAAGAGTGGTATTTTAATTAACTGACGTTGATG GTCAATAAGGGCCAGCGACAGCCTGATGACATTT CACACATTACTTTAACTGAAGAGCCTGATAAGCAATGGT AGAGCTTTGAAGGATCTTGTTGGGTACAGCTAAGC	MW373508	White bream virus strain DF24/00, complete genome	53%
Putative circo virus	Circo	Chinook	CGAGAAGTGCCCCACCACCAAAGAATACATTGGCAGT GCATGGGCATTGTCGCAAAAAACATAACTTTGAAACAA GCCATTGCGGTATTGCCCAATGCACACTTGGAGCCCTC TAAATGTGAAGCCCTCGATGCTACGTATGGAAAAAAG AGACGAGGATCGAGGGCTCTACATTTGAAGTCGGAAA GAGGCCATTTAAGATGAACTCAAAAACGGACTGGGCAG CAATGAGACCGACCTTGC	MW373509	Circoviridae 18 LDMD-2013, complete genome	48%
Putative hantavirus	Hantavirus	Chinook	CAGGAATTGAGGTCAGGGACTGCAAAGGAATCTCAGG GACCTCAATGGGAACAGTGTGCACAGGAATCTCAGG GACCTCAATGGGAACAGTGTGCACGGATGTCACAGTGATGT GCAGCGGGCCAACCTGCTGTGGAGAGAAGAACTATGATTG CATTCACCGCAACAGCCAGGACCAAGAGGTGTTCTCG TGTGGAGGAAAGGAGACAACGGCAAAGCTGGACCTTG AGATCGTGATGGTTGGGGCCGTTGAAAGCAGCTTGATAGGA GCAGCCACAATGGGGGCGGTTGAAGCCTTAACTGGGC TTAAGCCATGGGAGGTTGGCCTTGCAATAGGAGGAGG CCTTGCAGGAGGTCCTCTGCCATAGGAGGAGG CCTTGCAGGAGGCCCGCATAAAGAAGAAAAGA GATGACTGAGAAGCCCGATTAAATCGAAAGAAGAAAAAGA GATGACTGAGAAGCCCGATTAAATCCAAAAG	MW373510	Wenling red spikefish hantavirus	43%
Pacific salmon nidovirus sequence variant	Nido2_a	Chinook	GATATCAACAACTACCTCCAGAGGAGACAGTAGTAGCG ATGTCACCATTGCCTCCAATGTCGACACCCCTGCAACA ACACCCTCCAGTCCCTTCTACGGTGTCTATCAATTCAAC ACCCCCGAAAGAACACCTACATTTTTGTAGGAACACT ACCACCGCCTCTACCTGAAGCTCCAGTTCCTTCAGCTG AAGTTCGCACACCTGATGCAGTTACGGAATTCATTCGT CCTGCAATACCAGATTCCCCAG	MW373511	Pacific salmon nidovirus isolate	77%
Putative picorna virus	Picorna2	Chinook	CTATTGGTCAACCCATCTTTCAACAATTACAAGCAGTGT CTTGTGCCTATGAAATCCGCACGCCATATTATCGAGGT ATTCCATGTGACGTTGTAGACTCAACTCA	MW373512	Halhan virus 1 replicative protein and structural protein genes, complete cds	68%
Putative Qin- like virus	Qin	Chinook	AAAAGTGGCCAAACTATTCTATCCCGTTATAGACGCCG ACAATCGTGAGTTATACACGTCTATCCATATGATCGGG CACTGGGCCTCTACTCACCTCAC	MW373513	Sanxia Qinvirus- like virus 1 strain	39%
Putative rhabdo virus	Rhabdo3	Chinook	TCTTCCAATTCATCATTGTTTCTAACTGTTGTTGTCTTAT AATGAGTGCATATAACTTGATTATCTCCTTGAGCTAGCA CTTTCACCACAGTATTCCTGACTGCTGATTCTCTTCTTA TGACTAAAAGATTCCATATGCTCCAACCTTTTTGTCTCA ATCCTTCTAATCCACCTTTCTGTCCATCCCG	MW373514	Spring Viremia of Carp complete genome	79%

Species	Pathogen	Туре	Prevalence
Chum	Candidatus Branchiomonas cysticola	Bacterium	56%
	Candidatus Syngnamydia salmonis (Sch)	Bacterium	6%
	Ceratanova shasta	Parasite	10%
	Ichthyobodo sp.	Parasite	21%
	Ichthyophonus hoferi	Parasite	29%
	Loma sp.	Parasite	50%
	Myxobolus insidiosus	Parasite	1%
	Parvicapsula kabatai	Parasite	2%
	Parvicapsula pseudobranchicola	Parasite	26%
	Sphaerothecum destruens	Parasite	1%
	Viral encephalopathy and retinopathy virus	Virus	1%
Coho	Candidatus Branchiomonas cysticola	Bacterium	89%
	Candidatus Syngnamydia salmonis (Sch)	Bacterium	10%
	Ceratanova shasta	Parasite	4%
	Erythrocytic necrosis virus	Virus	3%
	Ichthyobodo sp.	Parasite	14%
	Ichthyophonus hoferi	Parasite	59%
	Ichthyophthirius multifiliis	Parasite	1%

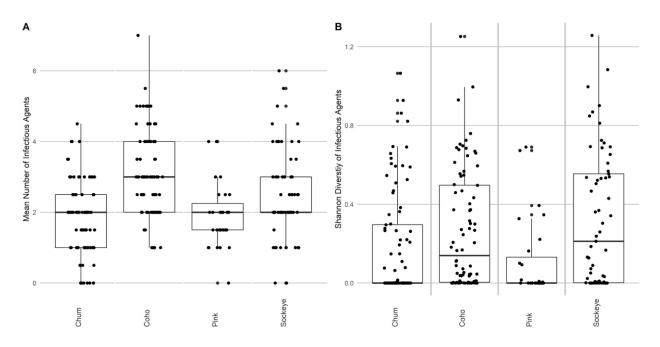
Supplementary Table 3: Infectious agent prevalences in the Gulf of Alaska winter 2019

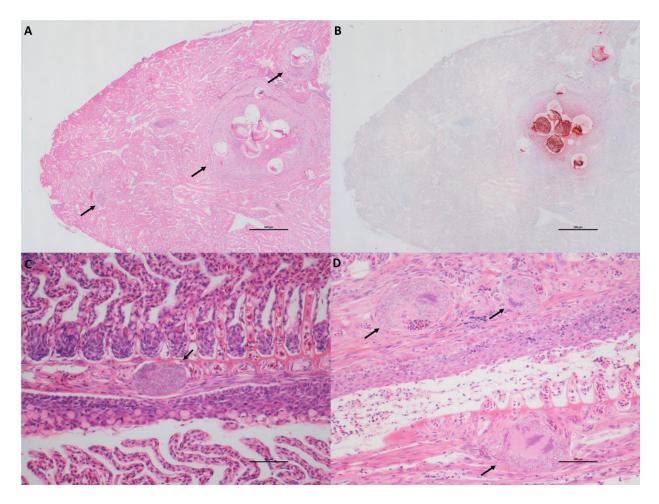

	Kudoa thyrsites	Parasite	1%
	Loma sp.	Parasite	53%
	Myxobolus insidiosus	Parasite	4%
	Nanophyetus salmincola	Parasite	1%
	Paranucleospora theridion / Desmozoon lepeophtherii	Parasite	6%
	Parvicapsula kabatai	Parasite	3%
	Parvicapsula minibicornis	Parasite	9%
	Parvicapsula pseudobranchicola	Parasite	18%
	Putative rhabdo virus	Virus	1%
	Salmovirus WFRC1	Virus	5%
	Sphaerothecum destruens	Parasite	5%
	Viral encephalopathy and retinopathy virus	Virus	36%
Pink	Candidatus Branchiomonas cysticola	Bacterium	89%
	Candidatus Syngnamydia salmonis (Sch)	Bacterium	4%
	Ichthyobodo sp.	Parasite	30%
	Ichthyophonus hoferi	Parasite	37%
	Kudoa thyrsites	Parasite	4%
	Loma sp.	Parasite	19%
	Parvicapsula pseudobranchicola	Parasite	26%
	Sphaerothecum destruens	Parasite	4%

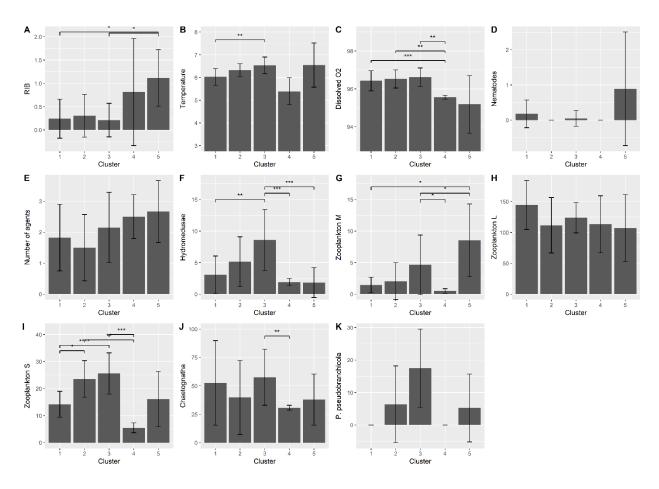
Sockeye	Candidatus Branchiomonas cysticola	Bacterium	59%
	Candidatus Syngnamydia salmonis (Sch)	Bacterium	11%
	Ichthyobodo sp.	Parasite	3%
	Ichthyophonus hoferi	Parasite	33%
	Ichthyophthirius multifiliis	Parasite	2%
	Loma sp.	Parasite	67%
	Pacific salmon parvovirus	Virus	39%
	Parvicapsula minibicornis	Parasite	2%
	Parvicapsula pseudobranchicola	Parasite	16%
	Putative -picorna virus	Virus	2%
	Sphaerothecum destruens	Parasite	25%
	Viral encephalopathy and retinopathy virus	Virus	2%

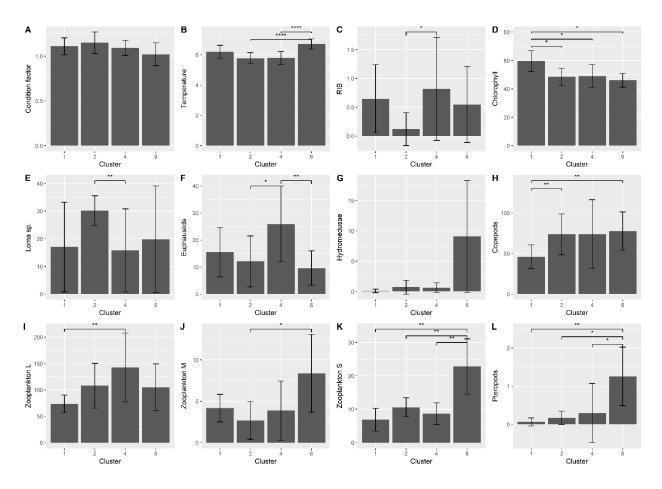

Supplementary Table 4. Changes in oceanographic variables experienced by salmon. Maximal and mean changes in oceanographic variables between sampling stations were calculated per km and in percent. Then, the values were multiplied by the daily net distance travel of 15.1 km of salmon in the area to derive the daily changes per variable experienced by the salmon:

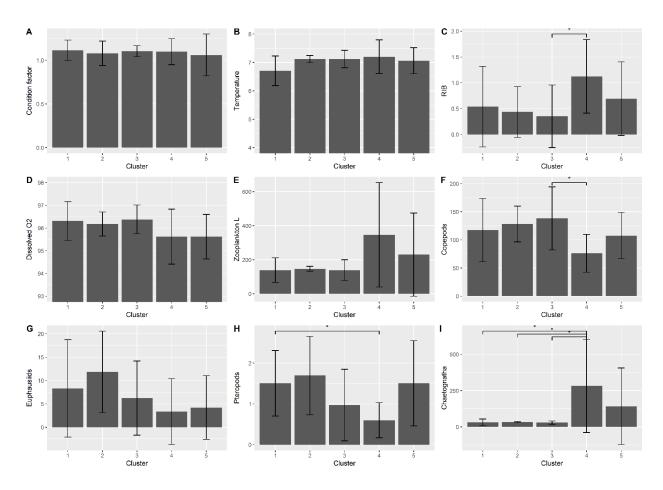
0.795 body length s⁻¹ (average speed) * 0.529 (gross to net distance conversion) * 415mm (mean length of salmon in study) * 24h = 15.1 km. Swim speed and conversion factor are based on Ogura and Ishida, 1992 and 1995. See Table 3 for abbreviations.

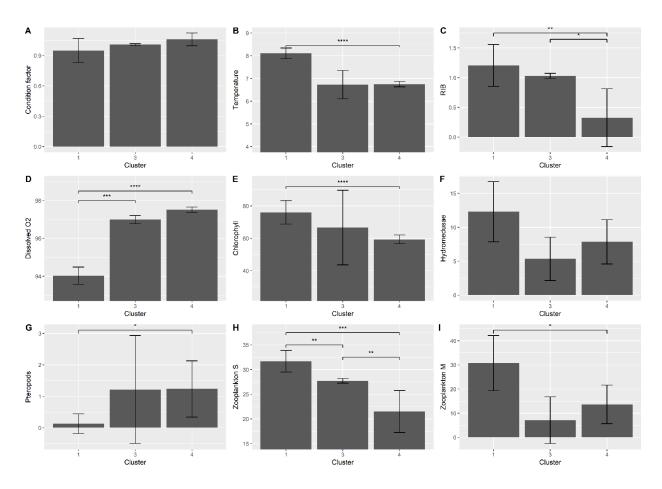

Factor	Unit	Observed		Max. change day ⁻¹		Mean change day ⁻¹	
		Max	Mean	Value	%	Value	%
TEM	°C	8.27	6.40	0.13	2%	0.03	0%
SAL	ppt	32.67	32.46	0.03	0%	0.00	0%
Chl_Flu	ppb	82.91	52.52	3.65	5%	0.41	1%
DO_p	%	97.61	95.47	0.66	1%	0.04	0%
Zoo_S	mgWW.m-3	48.09	16.72	2.86	44%	0.52	3%
Zoo_M	mgWW.m-3	44.36	3.48	4.14	532%	0.38	11%
Zoo_L	mgWW.m-3	727.02	108.09	82.16	41%	5.16	5%
Zoo_total	mgWW.m-3	767.33	137.03	83.04	36%	4.30	3%
Cope	mgWW.m-3	283.25	72.20	20.70	30%	2.63	4%
Euphaus	mgWW.m-3	38.65	0.86	5.24	5244%	0.25	28%
Ptero	mgWW.m-3	3.24	0.49	0.43	194%	0.04	9%
Medu	mgWW.m-3	29.38	1.95	3.98	3983%	0.44	23%
Chaeto	mgWW.m-3	679.70	26.95	79.24	2544%	2.74	10%

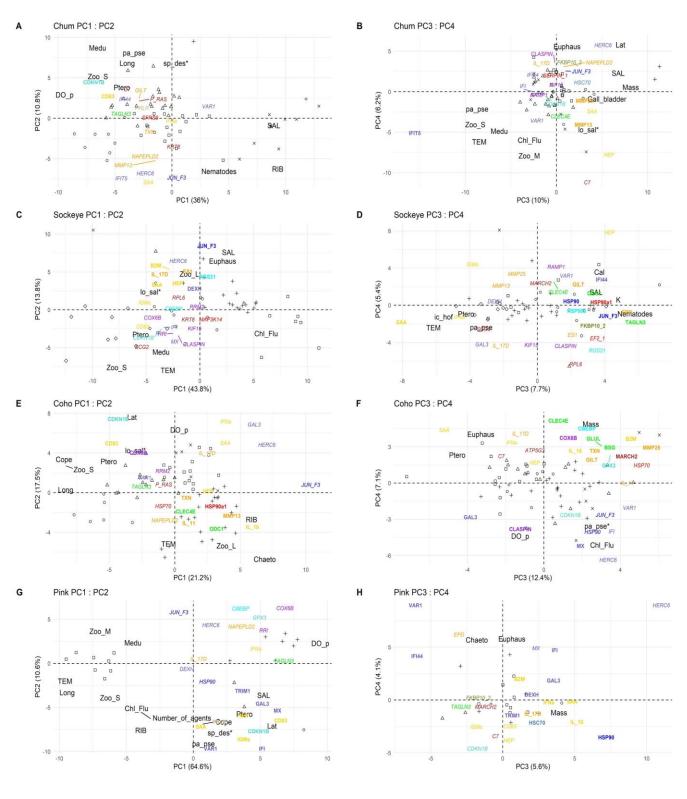

Supplementary Figure 1: Survey locations and salmon catches during the 2019 Gulf of Alaska Expedition. Locations where no salmon were caught are denoted by "x".


Supplementary Figure 2: Fish health samples from all species were taken from salmon that are representative subsamples (blue: "Fish_health") of all salmon (red: "All") caught during the 2019 Gulf of Alaska expedition. Fulton's body condition factor K of salmon caught during the 2019 Gulf of Alaska expedition.

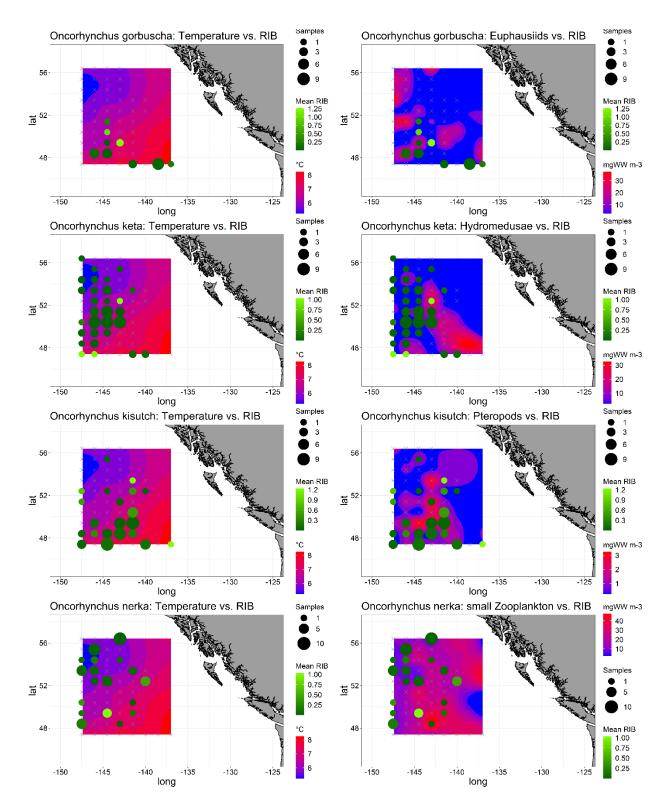

Supplementary Figure 3: Number of infectious agents and pathogens (A) and Shannon Weaver diversity (B) of infectious agents and pathogens by species. n(chum) = 84, n(coho) = 80, n(pink) = 27, n(sockeye) = 61.


Supplementary Figure 4: Histopathology of high load individuals from the GoA for *Ichthyophonus hoferi and Loma* sp.. (a): Coho salmon heart: multiple granulomatous inflammatory foci due to *I. hoferi* infection (arrows), localized in all the compartments of the heart. (H&E - Scale bar 500 μ m). (b): Coho salmon heart: same field as (a). *I. hoferi* marked by ISH (red) inside the granulomata observed in the heart. (ISH - Scale bar 500 μ m). (c): Sockeye gills: *Loma* sp. xenoma (arrow). (H&E - Scale bar 100 μ m). (d): Coho gills: *Loma* sp. xenomas (arrows). (H&E - Scale bar 100 μ m)

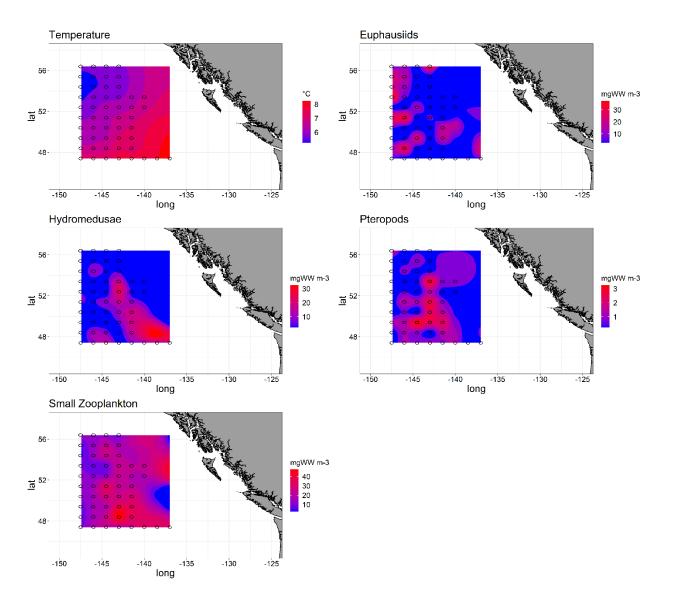

Supplementary Figure 5: Statistically significant covaried metadata with gene expression clusters in chum salmon. Covariance was tested with anova and differences between groups was assessed with t-test (p< 1e-04: "****", p< 0.001:"***", p<0.01:"***", p<0.05:"*").


Supplementary Figure 6: Statistically significant covaried metadata with gene expression clusters in sockeye salmon. Covariance was tested with anova and differences between groups was assessed with t-test (p< 1e-04: "****", p< 0.001:"***", p<0.01:"***", p<0.05:"*").

Supplementary Figure 7: Statistically significant covaried metadata with gene expression clusters in coho salmon. Covariance was tested with anova and differences between groups was assessed with t-test (p< 1e-04: "****", p< 0.001:"***", p<0.01:"**", p<0.05:"*").



Supplementary Figure 8: Statistically significant covaried metadata with gene expression clusters in pink salmon. Covariance was tested with anova and differences between groups was assessed with t-test (p< 1e-04: "****", p< 0.001:"***", p<0.01:"**", p<0.05:"*").



a General Stress
a Hypoxia
a Imminent Mortality Openeral Stress Osmotic Stress
a Imminent Mortality Hypoxia
a Imminent Mortality Hypoxia
a Infimmation
a Thermal Stress
a Thermal Stress
a Thermal Stress

Supplementary Figure 9: Gene expression analysis of salmon captured in the Gulf of Alaska during the winter 2019. (a), (b): chum, (c), (d): sockeye, (e), (f): coho, (g), (h): pink. PCA plot of gene expression is overlaid with meta-data (infectious agents, intrinsic variables, and environmental metadata). Dots depict individual salmon. Vectors show superimposed data correlating with differential gene expression. Only data with a correlation significance of p < 0.05 are shown. Gene names depict the top 20% of genes for ordination (italics) and top 20% of genes correlating with superimposed data (bold). Biomarker panel is indicated by the color of the gene acronym. For a full list of all genes and corresponding factors see Table 1 and 2.

Supplementary Figure 10: Spatial correlation of mean relative infection burden (RIB) at site of capture with temperature and primary prey of salmon species in the Gulf of Alaska during the winter 2019.

Supplementary Figure 11: Changes in oceanographic variables experienced by salmon. Observed oceanographic gradients across the study area with circles around the sampling sites indicating the area the samples salmon could have travelled from within the past 24h based on data by Ogura and Ishida, 1992 and 1995. Radius of the circle is 15.1km and represents the net 24h travel distance of salmon in the study area.

Supplementary materials and methods:

Histopathology

Gills, skeletal muscle, spleen, liver, heart, anterior and posterior kidney, pyloric caeca, and brain were fixed in 10% neutral buffered formalin. For salmon showing infection with selected high load agents, histopathological samples were prepared to visualize and localize lesions and pathogens by *in-situ* hybridization (ISH). Samples were dehydrated through an alcohol gradient, embedded in paraffin, cut at 3.5 µm, and stained with ematoxylin and eosin (H&E) for morphological evaluation by bright field microscopy. To confirm the presence and tissue infection of *Ichthyophonus hoferi,* it was visualized using an RNAscope probe (Advanced Cell Diagnostics, Newark, California, USA - F-I.hoferi-18S-rRNA Cat No. 823981). A housekeeping gene RNAscope probe (Advanced Cell Diagnostics, Newark, California, USA - Om-ppib Cat No. 540651) was utilized as a positive control. Samples with no detectable infection from the Fluidigm screen were used as negative controls. Signal amplification was performed with RNAscope 2.5 HD assay (Advanced Cell Diagnostics, Newark, California, USA, catalog No. 322350), according to the manufacturer's instructions, and followed by counterstaining with Gill's hematoxylin.