Supplemental materials for:

Using transcriptomics to examine the physiological status of wild-caught walleye (*Sander vitreus*) Jennifer D. Jeffrey, Matt J. Thorstensen, Eva Enders, Jason R. Treberg, and Ken M. Jeffries

Methods

Differential expression analysis

Salmon v0.13.3 (Patro et al. 2017) was used to estimate transcript abundances using a previously assembled reference transcriptome for walleye generated by Jeffrey et al. (2020) (Sequence Read Archive Accession SRP150633). The R/Bioconductor package "tximport" (Soneson et al. 2016) was used to estimate counts from abundances at the gene-level that were scaled using the average transcript length, averaged over samples, and library size (i.e., argument countsFromAbundance = lengthScaledTPM). Differential expression of genes was examined using the R/Bioconductor package "edgeR" (Robinson et al. 2010). Only genes with at least one count per million across eight samples were considered for further analysis, representing 34,185 genes, 12.9% of genes, and $> 98.0 \pm 1.9\%$ $(mean \pm standard deviation)$ of reads per sample. An effective library size was calculated using "calcNormFactors" in "edgeR" to normalize library sizes across samples (Robinson and Oshlack 2010). A general linear model was run in "edgeR" with sampling site and year as factors, and quasi-likelihood F-tests were used for hypothesis testing (Lun et al. 2016). A priori contrasts were designed to compare sampling sites (i.e., Dauphin River vs. Red River, Dauphin River vs. Matheson Island, Matheson Island vs. Red River) within a year and genes were considered differentially expressed at a Benjamini-Hochberg corrected False Discovery Rate (FDR) < 0.05.

To identify differentially expressed genes that were specific to each sampling site, lists were generated for each sampling site and consisted of genes that were differentially expressed at that site compared to both other sites within a given year (e.g., Red River *vs.* both Matheson Island and Dauphin

River; Matheson Island *vs.* both Red River and Dauphin River; Dauphin River *vs.* both Red River and Matheson Island). The site-specific differentially expressed genes were then identified as being consistently different across years, different only within 2017, or different only within 2018. Annotation information for differentially expressed genes was retrieved from the previously annotated walleye reference transcriptome (Jeffrey et al. 2020). Differentially expressed genes that did not have available annotation information from the reference transcriptome or were identified as uncharacterized or nonvertebrate, were re-blasted using blastx and the non-redundant protein sequences database. Any nonvertebrate genes were removed prior to gene enrichment analysis.

Statistical analysis for selecting candidate genes for qPCR

Using the RNA-seq data, a set of 20 candidate genes were selected for qPCR using a strategy similar to that of Akbarzadeh et al. (2020) to develop qPCR assays for hypoxia biomarkers in salmonids. Annotated genes representing consistent differences among sampling sites, across years were subjected to a PCA using the scaled and normalized cpm values and the "FactoMinerR" package in R. The PC associated with the separation of sampling locations was identified and the genes most correlated to this PC axis were determined using the "dimdese" function in "FactoMinerR". Candidate genes were selected based on their strong correlation with the PC that was associated with the separation of locations (p < 0.05) that were also not significantly correlated with the PC that separated years (p > 0.1). To verify separation of locations for the selected genes and to make comparisons to the qPCR data, an additional PCA using only the logCPM values for the 20 candidate genes was run. The PC representing separation by location was identified, and a two-way ANOVA was used to examine the fixed factors of location, year, and location × year for the PC scores of this axis. Residuals were examined for normality and equal variance and significant effects were further explored using a Tukey's HSD post-hoc test as above.

Comparison of RNA-seq data with qPCR

In addition to the Spearman's correlation analysis used to compare the RNAseq and qPCR log₂ fold changes for the 20 candidate genes, additional analyses were carried out to establish whether the individuals examined in the RNA-seq study were representative of the larger sample size assessed using qPCR. Using only individuals from Red River, Matheson Island, and Dauphin River (i.e., analyzed across both platforms), a linear model was developed for each target gene with location, year, the interaction of location and year, the platform, as well as total length and mass as fixed factor. A stepwise Akaike Information Criterion (AIC) was used to compare models and determine the best fit for the data. The "best fit" model was run, and the residuals were examined for normality and equal variance using the "check model" function from the R package, "performance". If the data did not meet the assumptions of the linear model, the data were rank transformed (only for *actn4*). Significant effects of categorical factors were further explored with a Tukey's HSD post-hoc test using the "emmeans" package in R. There were no significant effects of total length or mass when these factors were included in the models.

Results

Enrichment analysis for Matheson Island differentially expressed genes

Fewer genes (180 total and 168 unique) were differentially regulated in walleye from Matheson Island compared to Red River and Dauphin River (Tables S3, S4), and significant enrichment of GO terms were only evident in 2018. In 2018, GO terms related to the immune response were enriched for genes up-regulated in Matheson Island fish compared to fish from the other two locations (Fig. S3a), and included genes such as *tyrosine-protein kinase Lck* (*lck*) and *ZAP-70* (*zap70*) and *lymphocyte cytosolic protein 2* (*lcp2*) (Table S5). For genes down-regulated in fish from Matheson Island in 2018, the 'endoplasmic reticulum lumen' GO term was significantly enriched (Fig. S3b), involving genes such as *cytoskeleton-associated protein 4* (*ckap4*) and *transport and Golgi organization protein 1 homolog*

(*mia3*) (Table S5). Significant enrichment of GO terms for genes of Matheson Island walleye that were down-regulated compared to Red River fish and up-regulated compared to Dauphin River fish in 2018 included GO terms related to the respiratory electron transport chain (Fig. S3c) and mitochondrial genes associated with complex I (*mt-nd3–6, mt-nd4l*) and complex III (*mt-cyp*) (Fig. 5; Table S6).

Location	Year	Total <i>n</i>	Female <i>n</i>	Unknown sex <i>n</i>	Total length (mm)	Mass (kg)
Red River	2017	8	8	0	666 ± 42	3.29 ± 0.67
	2018	8	8	0	662 ± 47	3.68 ± 1.01
Matheson	2017	8	8	0	613 ± 57	2.30 ± 0.65
	2018	8	7	1	650 ± 65	2.80 ± 1.07
Dauphin River	2017	8	8	0	578 ± 61	1.97 ± 0.40
	2018	8	5	3	555 ± 57	1.83 ± 0.68

Table S1. Metadata for walleye (*Sander vitreus*) collected from Red River, Matheson Island, and

 Dauphin River in the Lake Winnipeg system included in the RNA-sequencing analysis.

Data are presented as means \pm sd.

Gene name	Protein name	Forward primer (5'–3')	Reverse primer (5'–3')	Product (bp)	Eff. (%)
<u>Cytoskelet</u>	on organization				
actn4	Alpha-actinin-4	CTCTGCGAAAGAGGGTCTTCTC	GACCGTCCTTCCAGCTAATGTG	98	102
actr2	Actin-related protein 2	ACCCGATGGAGAACGGTATG	GGTCGGGACCAAAGGTGTAGT	75	107
arf6	ADP-ribosylation factor 6	ATCCTGATCTTCGCCAACAAA	GGCCTAGCTTCTCCTGGATCTC	73	99
arhgdia	Rho GDP-dissociation inhibitor 1	GCGGCACCTACACCATCAA	CACCAATCCCAGGAGAGATGA	70	104
cdc42	Cell division control protein 42 homolog	AGACAGCAACACGATCGAGAAG	TGAGCTCACGAGCCAGCTT	86	99
cotl1	Coactosin-like protein	CCTGGATCGGTGAGAACATCA	CTTTGACCAGCGCCTTGTC	69	103
fam49b (cyrib)	Protein FAM49B (CYFIP- reltated Rac1 interactor B)	GCACCTGGAGCAGAAACAGTCT	GCAGCGTGAAGTGCAGGAT	62	104
pfn2	Profilin-2	CAGCTACTGCATGCACCTGAA	GCCTTGCCGACACAGATGT	66	99
Stress resp	onse				
akr1a1b	Aldo-keto reductase family 1 member A1-B	AGCAGTTATTTGGGCATTGGA	CCAAATGTCTCATGCAGTGCTT	102	91
dnajc9	DnaJ homolog subfamily C member 9	TACGAGGTGCTCGGCATCA	TGGACTTTCAGCGACACTTTGT	80	94
gpx1	Glutathione peroxidase 1	CATGAGCGGTACACCAGCAA	TTCTCCTGGTGGCCGAACT	71	91
slc25a24	Calcium-binding mitochondrial carrier protein SCaMC-1	GGAGGGAGCATTTCCTGTTTAA	CACCAATATCCAGCACCGTAGA	87	101
ube2j1	Ubiquitin-conjugating enzyme E2 J1	TCATCCAGACAGGCAAGTGAGA	TGCAGACGTGGAGGTGTCTTC	81	107
DNA repa	ir				
rpa2	Replication protein A 32 kDa subunit	TCCGGGCACGTATGTCAAA	GCCACGATAGATCGGTGGTT	66	97

Table S2. Oligonucleotide primers for qPCR in walleye (Sander vitreus).

<u>Golgi prot</u>	ein transport				
ap1s1	AP-1 complex subunit sigma-1A	CAGGGAGCTGATGCAGATAGTG	GGTCCCTCCATTCGAGGAA	68	100
eiprl	EARP-interacting protein homolog	AAGTTCACCTCGGGCAAGTG	CTCGTATGGCCGTGTCATTG	76	104
<u>Immunity</u>					
tnfaip8l2	Tumor necrosis factor, alpha-induced protein 8- like protein 2	CACCAAAAGCTCTGTCCAAATG	GCGGTACAGTTCGTCCAGGAT	67	104
Ion transpo	<u>ort</u>				
тси	Calcium uniporter protein, mitochondrial	TGCTTACACGCCAGGAGTATGT	CTTTTCACCCCCTTGTGGAA	79	95
cnnm4	Metal transporter CNNM4	GGTGTCATGGCACTCAATGC	GGTTCAACCCGCTGACGTTA	67	106
<u>Signaling</u>	<u>pathways</u>				
dgka	Diacylglycerol kinase alpha	GCTGCACCTGTTGCAAGTACA	GCGACAACCAATCTTCGGTTT	104	107

Location	Contrast	Regulation	Annotated	Unique	Enriched
			genes	genes	genes
Red River	Both years	Up	43	40	6
		Down	104	90	50
	2017 only	Up	89	82	14
		Down	641	582	451
	2018 only	Up	248	234	0
		Down	224	206	126
Matheson Island	Both years	Up	0	0	0
		Down	4	3	0
		Up vs. R; Down vs. D	1	1	0
	2017 only	Up	27	27	0
		Down	22	22	0
		Up vs. R; Down vs. D	3	3	0
		Down vs. R; Up vs. D	2	2	0
	2018 only	Up	33	32	8
		Down	35	34	4
		Up vs. R; Down vs. D	33	26	0
		Down vs. R; Up vs. D	20	18	5
Dauphin River	Both years	Up	34	30	4
		Down	9	9	0
	2017 only	Up	64	62	0
		Down	25	25	0
	2018 only	Up	417	373	176
		Down	331	312	25

Table S3. Number of differentially regulated genes with annotation information, the number of unique genes, and the number of enriched genes following enrichment analysis of gene ontology terms for walleye (*Sander vitreus*) sampled across the Lake Winnipeg system in 2017 and 2018.

R, Red River; D, Dauphin River

Table S4. Differentially regulated genes in walleye (*Sander vitreus*) sampled from the Red River (R) Matheson Island (M), and Dauphin River (D) in 2017 (17) and 2018 (18). Log₂ fold-change (LogFC), false discovery rate (FDR), annotation source, and uniport ID, as well as E value, percent ID, and transcript sequence are provided in the .xlsx file.

Table S5. Differentially regulated genes associated with significantly enriched gene ontology (GO) terms (biological processes, BP; molecular functions, MF; cellular components, CC) for walleye (*Sander vitreus*) sampled from the Red River (R) Matheson Island (M), and Dauphin River (D) in 2017 (17) and 2018 (18). The GO category (GO cat.; biological process, BP; molecular function, MF; cellular component, CC), GO representative summary term (GO rep.), GO term description (GO desc.), as well as gene and protein names are presented in the .xlsx file.

			D.17vs	R.17	D.18	vsR.18	M.17	s R.17	M.18	vsR.18	D.17v	sM.17	D.18v	sM.18
Gene id	Gene	Contrast	logFC	FDR	logFC	FDR	logFC	FDR	logFC	FDR	logFC	FDR	logFC	FDR
Glycolysis/gluconeogenesis														
walleye DN102551 c0 g1	pck1	R.18 up	-0.92	0.033	-1.84	0.000	-0.17	0.816	-1.03	0.031	-0.75	0.223	-0.81	0.082
walleye_DN113477_c6_g3	aldocb	R.17 down,	0.51	0.010	0.67	0.000	0.41	0.048	0.17	0.580	0.10	0.915	0.50	0.019
		D.18 up												
walleye_DN109278_c2_g1	enol	R.17 down,	0.56	0.014	0.95	0.000	0.54	0.024	0.25	0.447	0.03	0.990	0.70	0.005
		D.18 up												
walleye_DN113326_c7_g6	gapdh	R.17 down,	0.38	0.036	0.36	0.031	0.46	0.014	-0.04	0.925	-0.07	0.944	0.40	0.038
11 DN112271 0 1	1.11	D.18 up	1.00	0.001	1.00	0.003	1.45	0.000	0.00	0 770	0.12	0.0(2	0.00	0.027
walleye_DN1133/1_c0_g1	lana	R.1 / down,	1.33	0.001	1.09	0.002	1.45	0.000	0.20	0.//8	-0.12	0.963	0.89	0.027
walleve DN112271 of al	ldha	D.18 up P.17 down	0.03	0.002	0.08	0 000	1.00	0 001	0.23	0.633	0.07	0.078	0.75	0.018
walleye_DN1155/1_e4_g1	iunu	D 18 up	0.75	0.002	0.70	0.000	1.00	0.001	0.23	0.055	-0.07	0.978	0.75	0.010
walleve DN108570 c4 g3	tni 1 h	R 17 down	0.49	0.015	0.66	0.000	0.44	0.037	0.18	0 551	0.05	0 974	0.48	0.026
	iprio	D.18 up		0.010	0.00	0.000		0.007	0.10	0.001	0.02	0.971	0110	0.020
walleye DN111971 c3 g8	eno3	D.18 up	0.53	0.040	0.86	0.000	0.49	0.072	0.19	0.663	0.05	0.986	0.67	0.013
walleye DN105332 c1 g6	fbp1	D.18 up	0.34	0.224	0.57	0.013	0.41	0.132	0.00	0.996	-0.08	0.966	0.58	0.033
walleye_DN111191_c5_g1	hk2	D.18 up	0.33	0.040	0.36	0.014	0.29	0.086	0.01	0.986	0.04	0.975	0.35	0.041
walleye_DN104637_c6_g1	pfkfb1	D.18 up	0.21	0.561	0.85	0.001	0.14	0.767	0.13	0.809	0.08	0.971	0.72	0.018
walleye_DN109466_c13_g1	pkm	D.18 up	0.30	0.156	0.49	0.006	0.55	0.007	-0.12	0.733	-0.25	0.492	0.62	0.004
Metabolism	mat and A	D hoth up	0.42	0.011	0.95	~0.001	0.45	0.011	0.40	0.027	0.02	0.002	0.45	0.012
walleye_DN104552_co_g1	mi-na4	K.boun up, M 18 int	-0.43	0.011	-0.03	\0.001	-0.45	0.011	-0.40	0.037	0.02	0.992	-0.45	0.012
		D 18 down												
walleve DN109940 c8 g1	mt-nd5	R both up	-0.66	0.000	-1.17	<0.001	-0.48	0.009	-0.72	0.000	-0 19	0.623	-0.45	0.016
	mi nas	M.18 int	0.00	0.000	1.1	.0.001	0.10	0.007	0.72	0.000	0.17	0.025	0.10	0.010
		D.18 down												
walleye DN109940 c8 g3	mt-nd5	R.both up,	-0.56	0.002	-1.00	<0.001	-0.41	0.027	-0.54	0.008	-0.15	0.769	-0.47	0.016
•		M.18 int.,												
		D.18 down												
walleye_DN109940_c8_g7	mt-nd5	R.both up,	-0.68	0.000	-1.13	<0.001	-0.50	0.004	-0.63	0.001	-0.19	0.584	-0.50	0.005
		M.18 int.,												
		D.18 down												
walleye_DN109940_c7_g12	mt-nd6	R.both up,	-0.65	0.000	-1.10	<0.001	-0.48	0.009	-0.60	0.003	-0.17	0.690	-0.50	0.009
		M.18 int., D_{12}												
wellow $DN104552$ of -4	mat 10 12	D.18 down	0.44	0 000	0.02	~0 001	0.26	0.027	0.50	0.002	0.09	0.022	0.22	0.066
walleye DN104052_C0_g4 walleye DN108055 c^{4} c^{10}	mi-nas	R 18 up	-0.44	0.000	-0.92	~0.001 <0.001	-0.30	0.03/	-0.39	0.002	-0.08	0.922	-0.33	0.000
walleye_DN106955_04_g10	ти-суб	K.10 up,	-0.31	0.020	-0.01	~0.001	-0.30	0.032	-0.40	0.04/	0.00	0.905	-0.41	0.030

Table S6. Differentially regulated genes associated with glycolysis and gluconeogenic pathways, metabolism, mTOR pathway, and hypoxicresponse in walleye (*Sander vitreus*) sampled from the Red River, Matheson Island, and Dauphin River in 2017 and 2018.

		M.18 int. up,												
		D.18 down												
walleye_DN112225_c12_g2	mt-atp8	R.18 up	-0.18	0.237	-0.46	<0.001	-0.26	0.082	-0.35	0.028	0.08	0.905	-0.11	0.557
walleye DN108955 c4 g9	mt-cyb	R.18 up	-0.27	0.171	-0.77	< 0.001	-0.35	0.071	-0.43	0.036	0.08	0.936	-0.34	0.094
walleye DN107218 c0 g1	mt-col	R.17 up,	-0.49	0.002	-0.68	<0.001	-0.54	0.001	-0.31	0.090	0.05	0.960	-0.36	0.036
•0		D.18 down												
walleye DN107218 c2 g1	mt-col	R.17 up,	-0.42	0.011	-0.64	<0.001	-0.51	0.003	-0.28	0.149	0.10	0.881	-0.36	0.042
<i>y</i>		D.18 down												
walleye DN107248 c63 g4	mt-nd1	R.17 up,	-0.67	0.001	-1.09	<0.001	-0.49	0.019	-0.37	0.116	-0.18	0.720	-0.72	0.002
<i>y</i>		D.18 down												
walleve DN106456 c2 g1	mt-col	R.17 up	-0.43	0.004	-0.61	< 0.001	-0.54	0.001	-0.30	0.079	0.11	0.808	-0.31	0.055
walleve DN110148 c1 g1	mt-col	R.17 up	-0.60	0.002	-0.65	< 0.001	-0.63	0.002	-0.31	0.182	0.03	0.986	-0.34	0.109
walleve DN100513 c0 g1	mterf3	D.18 up	0.25	0.070	0.28	0.021	0.38	0.005	-0.11	0.577	-0.14	0.636	0.40	0.005
walleve DN102460 c0 g1	atn5h	D 18 down	0.12	0.649	-0.62	0.001	0.07	0.842	-0.20	0.473	0.05	0 971	-0.42	0.040
walleve DN112225 c12 g1	mt-atn6	D 18 down	-0.43	0.013	-0.84	<0.001	-0.29	0.127	-0.30	0.145	-0.14	0.761	-0 54	0.004
walleye $DN107218$ c1 g1	mt-col	D 18 down	-0.43	0.019	-0.61	0.001	-0.47	0.041	-0.12	0.771	0.04	0.984	_0.49	0.001
walleye $DN107248$ c63 g5	$mt co^2$	D 18 down	0.75	0.055	-0.01		0.17	0.518	0.12	0.771	0.04	0.004	0.55	0.041
walleye_DN10/248_005_g5	$m_{1}-c_{02}$	D.18 down	-0.27	0.223	-0.02	<0.001	-0.17	0.318	-0.27	0.200	-0.09	0.920	-0.55	0.010
walleye_DN112402_c1_g1	<i>mi-cos</i>	D.18 down	-0.52	0.029	-0.04	<0.001	-0.55	0.215	-0.51	0.527	-0.19	0.760	-0.55	0.039
walleye_DN112462_C1_g5	mi-cos	D.18 down	-0.30	0.009	-0.80	<0.001	-0.24	0.274	-0.51	0.18/	-0.11	0.880	-0.50	0.000
walleye_DN108955_c3_g4	mt-cyb	D.18 down	-0.27	0.202	-0.84	<0.001	-0.36	0.076	-0.41	0.061	0.09	0.921	-0.43	0.038
walleye_DN104552_c7_g6	mt-nd4	D.18 down	-0.45	0.008	-0.86	<0.001	-0.42	0.017	-0.36	0.063	-0.03	0.984	-0.50	0.006
Unmouig														
Hypoxia		D 10 Jam	2 (0	0.021	4.00	0.001	2.25	0.051	2.00	0.022	0.44	0.060	1.02	0.552
walleye_DN110302_C3_g6	nosi	R.18 down	3.09	0.021	4.90	0.001	3.23	0.031	3.88	0.022	0.44	0.900	1.02	0.552
walleye_DN110/66_c1_g5	egins	R.1/down	1.12	0.04/	0.26	0.707	1.19	0.038	-0.11	0.939	-0.07	0.988	0.36	0.641
walleye_DN113735_c3_g1	slc2a1	R.17 down	0.45	0.002	0.41	0.002	0.48	0.002	0.28	0.096	-0.03	0.984	0.13	0.477
walleye_DN113735_c3_g8	slc2a1	R.17 down	0.94	0.005	0.72	0.021	0.76	0.029	0.18	0.784	0.17	0.913	0.54	0.144
walleye_DN100261_c0_g1	hmox	D.18 up	0.24	0.614	0.74	0.027	0.16	0.784	-0.45	0.351	0.08	0.980	1.19	0.003
walleye_DN109309_c3_g1	hyoul	D.18 up	0.48	0.063	0.61	0.007	0.90	0.001	-0.01	0.988	-0.42	0.247	0.63	0.018
walleye_DN113024_c7_g1	hbad	D.18 down	-1.09	0.006	-1.45	0.000	-0.43	0.378	-0.09	0.930	-0.66	0.263	-1.36	0.002
TOP is other set.														
mIOK painway		D 10	0.24	0.224	1.07	0.000	0.12	0.701	0.72	0.024	0.49	0.216	0.54	0 1 1 2
walleye_DN105880_c11_g2	prkaa2	R.18 up	-0.54	0.334	-1.2/	0.000	0.15	0.791	-0.73	0.034	-0.48	0.510	-0.54	0.113
walleye_DN105603_c3_g10	sehil	R.18 down	0.39	0.002	0.56	0.000	0.24	0.073	0.31	0.029	0.15	0.503	0.25	0.061
walleye_DN10/366_c3_g3	eif4a1	R.17 down,	0.51	0.001	0.65	0.000	0.40	0.010	0.30	0.079	0.11	0.813	0.35	0.030
		D.18 up												
walleye_DN111020_c1_g2	eif4b	R.17 down,	0.31	0.023	0.42	0.001	0.38	0.008	0.10	0.656	-0.06	0.932	0.32	0.029
		D.18 up												
walleye_DN104291_c1_g1	eif4g1	R.17 down,	0.77	0.003	0.91	0.000	0.77	0.005	0.21	0.624	0.00	0.999	0.70	0.012
		D.18 up												
walleye_DN113534_c6_g1	hras	R.17 down,	0.46	0.002	0.53	0.000	0.35	0.022	0.14	0.543	0.11	0.822	0.39	0.012
		D.18 up												
walleye DN111314 c0 g4	atf4	R.17 down	0.20	0.037	0.22	0.015	0.33	0.001	0.15	0.196	-0.13	0.444	0.06	0.643
walleye DN106983 c0 g1	eif4e	R.17 down	0.42	0.001	0.14	0.275	0.35	0.006	-0.14	0.378	0.07	0.870	0.28	0.031
walleye_DN106499_c5_g4	grb2	R.17 down	0.47	0.000	0.09	0.377	0.32	0.002	0.10	0.460	0.14	0.368	-0.01	0.961
0	-													

walleye_DN113534_c6_g4 walleye_DN108382_c6_g1 walleye_DN109684_c2_g3	hras kras lamtor2	R.17 down R.17 down R.17 down	0.28 0.43 0.31	0.006 0.000 0.006	0.19 0.25 0.24	0.043 0.020 0.020	0.44 0.50 0.25	0.000 0.000 0.030	0.11 0.09 0.14	0.432 0.656 0.364	-0.16 -0.07 0.06	0.283 0.883 0.912	0.08 0.17 0.10	0.568 0.210 0.468
walleye_DN105554_c3_g7	mapk1	R.17 down	0.33	0.015	0.31	0.013	0.29	0.039	0.09	0.731	0.04	0.969	0.23	0.131
walleye_DN113739_c6_g6	mapkI	R.17 down	0.51	0.002	0.17	0.319	0.37	0.030	-0.03	0.954	0.14	0.764	0.20	0.306
walleye_DN103901_c0_g1	mtor	R.1 / down	0.33	0.012	0.30	0.011	0.32	0.018	0.18	0.290	0.01	0.994	0.13	0.435
walleye_DN105466_c8_g1	pdpkI	R.17 down	0.28	0.006	0.02	0.884	0.36	0.001	0.09	0.593	-0.07	0.824	-0.06	0.672
walleye_DN109353_c2_g8	rragc	R.I'/ down	0.23	0.017	0.21	0.023	0.26	0.010	0.15	0.234	-0.03	0.967	0.06	0.674
walleye_DN109353_c2_g5	rragc	D.18 up	0.55	0.001	0.56	0.000	0.14	0.526	0.10	0.757	0.40	0.060	0.46	0.009
walleye_DN112490_c3_g1	nprl3	D.18 down	-0.18	0.463	-0.39	0.037	-0.23	0.335	0.18	0.556	0.05	0.974	-0.58	0.008
PI3K/AKT/mTOR pathway														
walleye_DN112562_c7_g4	foxola	R.17 down	0.54	0.016	0.29	0.205	0.66	0.005	0.29	0.331	-0.11	0.917	0.00	0.995
walleye_DN103115_c0_g1	acaca	R.17 down, D.18 up	0.68	0.003	1.10	0.000	0.69	0.004	0.37	0.181	-0.01	0.999	0.73	0.004
walleye_DN108540_c0_g1	acly	R.17 down,	0.65	0.000	0.83	0.000	0.68	0.000	0.31	0.100	-0.03	0.984	0.52	0.003
		D.18 up												
walleye_DN108540_c0_g2	acly	R.17 down,	0.62	0.000	0.81	0.000	0.77	0.000	0.27	0.212	-0.16	0.717	0.54	0.004
		D.18 up												
Citric acid cycle														
walleye DN107782 c2 g6	idh l	R.17 down	1.11	0.001	0.45	0.154	0.94	0.006	0.04	0.971	0.17	0.912	0.42	0.263
walleye_DN107754_c3_g2	ogdh	R.17 down	0.35	0.012	0.15	0.298	0.37	0.011	0.06	0.825	-0.02	0.988	0.09	0.668
walleye DN107308 c5 g1	sdha	R.17 down	0.35	0.008	-0.06	0.742	0.30	0.029	-0.06	0.814	0.05	0.948	0.01	0.985

R.17, Red River 2017; R.18, Red River 2018; R.both, Red River both years; D.17, Dauphin River 2017; D.18, Dauphin River 2018; M.17, Matheson Island 2017; logFC, Log₂ fold-change; FDR, false discovery rate.

Significant differentially regulated genes are represented as bolded text. logFC values for significantly regulated genes are coloured to reflect genes differentially regulated in Red River (teal) and Dauphin River (blue) fish. In some cases, multiple contrasts may have been significant.

Table S7. Differentially regulated genes associated with ion regulation in walleye (Sander vitreus) sampled from the Red River, Matheson Island,

and Dauphin River in 2017 and 2018.

			D.17v	sR.17	D.18	vsR.18	M.17	vsR.17	M.18	vsR.18	D.17v	sM.17	D.18v	sM.18
Gene id	Gene	Contrast	logFC	FDR	logFC	FDR	logFC	FDR	logFC	FDR	logFC	FDR	logFC	FDR
walleye DN108377 c4 g1	aqp3	M.17 up	0.04	0.987	1.56	0.288	3.62	0.009	1.32	0.540	-3.58	0.035	0.24	0.927
walleye DN111678 c3 g2	aqp8	D.18 down	-1.48	0.098	-2.90	0.001	-0.57	0.641	-0.75	0.570	-0.92	0.618	-2.15	0.031
walleye_DN102608_c0_g1	aqpa	D.18 down	-1.14	0.013	-1.99	0.000	-0.59	0.263	-0.73	0.188	-0.55	0.535	-1.26	0.010
walleye_DN113771_c9_g2	atplal	R.18 up	-0.08	0.856	-1.16	0.000	0.17	0.692	-0.76	0.016	-0.25	0.725	-0.40	0.198
walleye_DN104577_c1_g1	atplal	R.17 up	-0.59	0.009	-0.84	0.000	-0.52	0.027	-0.44	0.094	-0.07	0.963	-0.41	0.101
walleye_DN104577_c1_g2	atplal	D.18 down	-0.22	0.651	-1.66	0.000	0.11	0.866	-0.47	0.310	-0.33	0.705	-1.19	0.002
walleye_DN113771_c14_g1	atplal	D.18 down	-0.11	0.843	-1.50	0.000	0.18	0.748	-0.49	0.292	-0.30	0.760	-1.01	0.008
walleye_DN113771_c14_g3	atplal	D.18 down	-0.09	0.890	-1.52	0.000	0.17	0.778	-0.43	0.394	-0.26	0.832	-1.09	0.007
walleye_DN106483_c6_g4	atp1a3	R.17 down	0.80	0.002	0.69	0.004	0.58	0.031	0.21	0.617	0.22	0.754	0.48	0.089
walleye_DN113771_c11_g1	atp1a3	D.18 up	0.23	0.140	0.54	0.000	0.23	0.141	0.08	0.787	-0.01	0.997	0.47	0.003
walleye_DN113771_c11_g5	atp1a3	D.18 up	0.26	0.292	0.77	0.000	0.36	0.133	0.23	0.459	-0.10	0.937	0.54	0.022
walleye_DN113859_c9_g1	atp1a3	D.18 up	0.20	0.190	0.41	0.002	0.24	0.109	-0.02	0.960	-0.04	0.965	0.43	0.005
walleye_DN113488_c5_g3	atp2a2	D.both down	-0.42	0.016	-0.39	0.017	0.03	0.921	0.00	0.996	-0.45	0.041	-0.39	0.039
walleye_DN106163_c0_g1	atp2b4	R.17 down	0.72	0.000	0.52	0.001	0.58	0.001	0.23	0.286	0.14	0.748	0.30	0.102
walleye_DN103456_c0_g1	atp2b4	M.18 up	2.63	0.267	-4.18	0.144	1.35	0.669	5.29	0.030	1.29	0.849	-9.47	0.003
walleye DN111653 c1 g1	atp6v0a2	R.17 down	0.25	0.044	0.19	0.110	0.37	0.004	-0.03	0.933	-0.12	0.681	0.22	0.110
walleye DN107940 c2 g1	atp6v0e1	R.17 down	0.33	0.002	0.10	0.386	0.23	0.035	0.01	0.970	0.10	0.704	0.09	0.542
walleye_DN106269_c5_g1	atp6v1a	R.17 down,	1.22	0.000	1.24	0.000	0.87	0.002	0.43	0.184	0.36	0.436	0.82	0.005
		D.18 up												
walleye_DN102031_c0_g1	atp6v1b2	R.17 down,	0.43	0.002	0.49	0.000	0.34	0.020	0.13	0.514	0.10	0.827	0.36	0.016
		D.18 up												
walleye_DN108788_c7_g1	atp6v1c1a	R.17 down,	0.47	0.001	0.51	0.000	0.39	0.005	0.08	0.766	0.07	0.897	0.43	0.004
		D.18 up												
walleye_DN104855_c4_g3	atp6v1c1a	D.18 up	0.49	0.014	0.56	0.003	0.19	0.465	0.07	0.873	0.30	0.349	0.49	0.024
walleye_DN110109_c4_g3	atp6v1e1	R.17 down,	0.68	0.000	0.76	0.000	0.48	0.017	0.16	0.588	0.21	0.618	0.60	0.004
	11	D.18 up	()=	0.000	0.51	0.046	0.10	0.000	0.40	0.022		0.025	0.10	0.000
walleye_DN1066/2_c2_g2	atpovIn	D.1 / down	-6.37	0.008	0.51	0.846	0.10	0.980	0.40	0.932	-6.46	0.035	0.10	0.982
walleye_DN104183_c4_g/	camk1	R.both down	0.56	0.000	0.65	0.000	0.64	0.000	0.58	0.001	-0.08	0.920	0.07	0./81
walleye_DN10631/_c1_g1	camk1d	D.18 up	1.39	0.011	2.38	0.000	0.64	0.328	0.60	0.439	0.75	0.414	I.79	0.003
walleye_DN10562/_c1_g1	camk2g	R.I / down	0.38	0.004	0.18	0.1/2	0.42	0.020	0.05	0.865	0.06	0.923	0.13	0.435
walleye_DN104069_c3_g1	cac42	R.both down	0.41	0.000	0.34	0.000	0.43	0.000	0.33	0.005	-0.02	0.98/	0.01	0.959
walleye_DN104069_c3_g2	cac42	R.both down	0.40	0.002	0.17	0.034	0.55		0.29	0.043	-0.15	0.550	-0.04	0.861
walleye_DN111692_22_1	cicns	K.1 / dOWn	0.02	0.015	0.1/	0.430	0.52	0.015	0.0/	0.8/6	-0.02	0.994	0.10	0./30
walleye_DN111682_c2_g1	cian1	D.18 down	0.03	0.94/	-0.49	0.041	0.52	0.054	0.20	0.4/0	-0.48	0.1/5	-0./5	0.000
walleye_DN111682_c2_g6	cian1	D.18 down	0.30	0.452	-0.00	0.039	0.79	0.014	0.10	0.785	-0.49	0.301	-0./0	0.023
walleve_DN110492_c2_g9	cian22	K.both up	-1.14	0.013	-U.90	0.023	-1.43	0.003	-1.11	0.032	0.28	0.809	0.15	0.833
walleye_DIN100552_C0_g1	cians	K.1 / dOWn	4.03	0.040	1.05	0.033	4.38	0.03/	4.04	0.044	-0.55	0.984	-3.38	0.091
walleye_DN106664_c5_g3	clan4	D.18 down	-0.06	0.901	-0.65	0.017	0.39	0.221	0.09	0.894	-0.45	0.298	-0./2	0.019

walleye_DN83550_c0_g1 walleye_DN110590_c3_g1 walleye_DN103849_c4_g3	cldn5 cldn8 kcnj1	R.both up D.18 down R.18 up	-0.69 -0.51 -0.64	0.010 0.174 0.188	-1.07 -1.46 -1.23	0.000 0.000 0.003	-1.13 0.05 -0.31	0.000 0.939 0.623	-1.05 -0.62 -1.15	0.001 0.132 0.023	0.44 -0.56 -0.33	0.285 0.291 0.815	-0.02 - 0.85 -0.08	0.977 0.023 0.934
walleye_DN104249_c1_g4	kcnj16	D.18 down	0.00	0.997	-1.06	0.002	0.26	0.616	-0.04	0.967	-0.26	0.827	-1.02	0.009
walleye_DN111684_c8_g2 walleye_DN104639_c0_g1	nr3c2 rhcg1	R.17 down R.18 up, M.18 Int, D.18 down	0.65 -0.54	0.123	0.74 -2.07	0.002 0.000	-0.09	0.011 0.882	0.51 - 0.77	0.083 0.041	-0.02 -0.45	0.994 0.436	0.23 -1.31	0.475 0.001
walleye DN112974 c2 g2	slc12a3	D.18 up	0.35	0.688	1.15	0.047	-0.49	0.563	-0.45	0.674	0.84	0.437	1.60	0.018
walleye DN106771 c6 g3	slc12a8	D.18 up	0.59	0.219	1.74	0.000	-0.19	0.798	0.20	0.825	0.78	0.220	1.54	0.002
walleye_DN105800_c0_g5	slc4a1	R.17 up	-1.83	0.012	-1.21	0.080	-1.53	0.043	-0.82	0.414	-0.30	0.941	-0.39	0.731
walleye DN111084_c5_g1	slc9a1	R.18 up	-0.90	0.002	-1.71	0.000	-0.44	0.177	-1.10	0.001	-0.46	0.312	-0.61	0.057
walleye_DN105658_c3_g2	slc9a3	R.18 up, M18 Int, D.18 down	-0.16	0.764	-1.92	0.000	-0.07	0.918	-0.81	0.037	-0.09	0.974	-1.11	0.004
walleye_DN108637_c1_g1	tjp3	R.17 down	0.38	0.012	0.42	0.003	0.45	0.004	0.28	0.119	-0.07	0.929	0.14	0.485

R.17, Red River 2017; R.18, Red River 2018; R.both, Red River both years; D.17, Dauphin River 2017; D.18, Dauphin River 2018; M.17, Matheson Island 2017; logFC, Log₂ fold-change; FDR, false discovery rate

Significant differentially regulated genes are represented as bolded text. logFC values for significantly regulated genes are coloured to reflect genes differentially regulated in Red River (teal), Matheson Island (light blue), and Dauphin River (dark blue) fish. In some cases, multiple contrasts may have been significant.

Table S8. Results for linear models examining the consistency of candidate gene mRNA levels measured by qPCR of walleye sampled in the Lake Winnipeg system (Red River, Matheson Island, Dauphin River) in 2017 and 2018 that were or were not part of the RNA-seq study.

Gene	Factor ^a	Sum squares	df	<i>F</i> -value	<i>p</i> -value
actn4	Year	6136.00	1	8.46	0.005
	RNAseq	3954.00	1	5.45	0.022
	Total length	78.00	1	0.11	0.744
	Mass	41.00	1	0.06	0.814
actr2	Location	3.77	2	7.06	0.001
	Year	1.48	1	5.57	0.020
	Total length	0.10	1	0.37	0.546
akrlalb	Year	6.00	1	19.46	< 0.001
	RNAseq	1.12	1	3.65	0.059
ap1s1	Location	1.20	2	2.52	0.086
1	Year	2.08	1	8.75	0.004
	Total length	0.11	1	0.46	0.498
	Location × Year	0.95	2	2.01	0.141
arf6	Location	3.818	2	12.06	< 0.001
	Year	0.07	1	0.44	0.510
	Total length	0.02	1	0.10	0.755
	Location × Year	1.76	2	5.55	0.005
arhgdia	Year	0.79	1	2.63	0.108
C	RNAseq	0.67	1	2.23	0.138
	Total length	0.06	1	0.21	0.652
	Mass	0.38	1	1.24	0.268
cdc42	Location	0.60	2	1.87	0.160
	Year	1.35	1	8.40	0.005
	RNAseq	0.17	1	1.05	0.309
cnnm4	Location	0.32	2	0.79	0.457
	Year	3.43	1	16.73	< 0.001
	RNAseq	0.50	1	2.45	0.121
	Total length	0.21	1	1.04	0.310
	Location × Year	1.14	2	2.78	0.067
cotl1	Location	16.90	2	42.46	< 0.001
	Year	0.34	1	1.72	0.193
	Total length	0.08	1	0.38	0.538
	Mass	0.00	1	0.02	0.879
dgka	Location	1.99	2	3.56	0.033
	Year	8.29	1	29.61	< 0.001
	RNAseq	0.87	1	3.12	0.081
	Total length	0.59	1	2.10	0.151
dnajc9	Location	1.39	2	3.59	0.031
	Year	3.56	1	18.36	< 0.001
	RNAseq	0.38	1	1.93	0.168

	Total length	0.00	1	0.01	0.931
eipr1	Location	0.99	2	1.98	0.144
	Year	3.38	1	13.57	< 0.001
	RNAseq	0.70	1	2.81	0.097
	Total length	0.25	1	1.02	0.316
	Location × Year	0.82	2	1.65	0.197
fam49b	Location	3.67	2	9.68	< 0.001
	Year	3.95	1	20.82	< 0.001
	RNAseq	0.23	1	1.21	0.275
	Mass	0.00	1	0.02	0.887
	Location × Year	0.91	2	2.40	0.097
gpx1	Location	7.21	2	12.69	< 0.001
	Year	7.59	1	26.72	< 0.001
	Mass	0.18	1	0.62	0.435
	Location × Year	1.41	2	2.48	0.089
тси	Location	1.56	2	2.97	0.056
	Year	4.34	1	16.54	< 0.001
	RNAseq	1.01	1	3.84	0.053
	Total length	0.61	1	2.32	0.132
	Mass	0.34	1	1.29	0.259
pfn2	Location	2.63	2	5.69	0.005
10	Mass	0.21	1	0.92	0.339
rpa2	Location	9.96	2	15.68	< 0.001
- F	RNAseq	0.05	1	0.17	0.679
slc 25a 24	Location	0.95	2	1 41	0 248
51025424	Year	5 40	1	16 14	< 0.001
tufain 017h	Voor	2.10	1	16.02	< 0.001
ιπμαιροι20		5.20 0.20	1	10.02	~ U.UUI
	KINASEY I	0.20	1	0.90	0.324
ube2j1	Location	3.78	2	7.81	< 0.001
	Y ear	0.29	1	1.19	0.279
	Mass	0.15	1	0.60	0.440
	Location × Year	4.33	2	8.94	< 0.001

^a Akaike Information Criterion (AIC) was used to determine which fixed factors (location, year, RNAseq *vs.* non-RNAseq, total length, mass, location × year) were included in the linear model. Significant fixed factors are represented as bolded text. See Table S2 for gene abbreviations.

Table S9. Results for the linear models examining the relative mRNA levels measured by qPCR of 20 candidate genes for walleye (*Sander vitreus*) sampled from the Red River, Riverton, Matheson Island, and Dauphin River in 2017 and 2018.

			-		
Gene	Factor ^a	Sum squares	df	<i>F</i> -value	<i>p</i> -value
actn4	Location	1.32	3	1.45	0.232
	Year	5.42	1	17.87	< 0.001
actr2	Location	23909.00	3	5.18	0.002
	Year	8163.00	1	5.31	0.023
	Mass	320.00	1	0.21	0.649
abulath	Location	1.05	2	2 2 1	0.070
ukriuid	Voor	1.55	5 1	2.31	0.079
	I cal Mass	0.04	1	0.15	0.020
	Location × Voor	0.04	3	0.15 2.60	0.098
		2.27	5	2.09	0.049
aplsl	Location	1.35	3	1.95	0.124
	Year	2.46	1	10.68	0.001
	Total length	0.12	1	0.53	0.468
arf6	Location	3.86	3	8.37	< 0.001
C C	Year	0.007	1	0.47	0.496
	Total length	0.02	1	0.14	0.710
	Location × Year	1.93	3	4.18	0.007
arhodia	Vear	1 41	1	4 85	0 029
unguiu	Mass	0.35	1	1.05	0.027
1 42		0.55	1 2	1.21	0.122
cdc42	Location	1.02	3	1.90	0.132
	Year	1.44	1	8.06	0.005
	Mass	0.04	I	0.23	0.630
cnnm4	Location	2.14	3	3.53	0.017
	Year	0.08	1	0.38	0.537
	Total length	0.30	1	1.50	0.222
	Location × Year	1.87	3	3.08	0.030
cotl1	Location	18.78	3	28.65	< 0.001
	Year	1.24	1	5.66	0.019
	Total length	0.12	1	0.54	0.464
	Mass	0.01	1	0.02	0.875
daka	Location	2.15	3	2 73	0.046
изпи	Vear	2.1 <i>5</i> 0.10	5 1	2.13	0.040 < 0.01
	i vai Total length	0.06	1 1	0.24	<pre>> 0.001 0.627</pre>
1		0.00	1	0.27	0.027
dnajc9	Location	1.98	3	2.80	0.042
	Year	3.79	1	16.11	< 0.001
	Mass	0.27	1	1.15	0.286
eipr1	Location	1.66	3	2.03	0.112
	Year	3.83	1	14.07	< 0.001
	Mass	0.172	1	0.63	0.427
fam49b	Location	5.46	3	9.87	< 0.001

	Year	4.65	1	25.24	< 0.001
	Mass	1.05	1	5.67	0.018
	Location × Year	0.86	3	1.55	0.205
gpx1	Location	9.23	3	9.86	< 0.001
	Year	10.28	1	32.91	< 0.001
	Location × Year	1.58	3	1.69	0.173
тси	Location	1.58	3	2.05	0.110
	Year	5.22	1	20.32	< 0.001
	Total length	0.008	1	0.03	0.861
pfn2	Location	2.86	3	4.25	0.007
10	Year	0.08	1	0.37	0.542
rpa2	Location	9.12	3	8.97	< 0.001
-	Total length	0.02	1	0.05	0.817
slc25a24	Location	1.91	3	2.13	0.100
	Year	7.70	1	25.88	< 0.001
	Mass	0.34	1	1.13	0.290
tnfaip8l2b	Location	0.84	3	1.42	0.240
	Year	2.71	1	13.77	< 0.001
	Mass	0.32	1	1.60	0.207
ube2j1	Location	3.88	3	5.73	0.001
	Year	0.30	1	1.32	0.253
	Mass	0.33	1	1.47	0.227
	Location × Year	4.57	3	6.74	< 0.001

^a Akaike Information Criterion (AIC) was used to determine which fixed factors (location, year, total length, mass, location × year) were included in the linear model.

Significant fixed factors are represented as bolded text. See Table S2 for gene abbreviations.

Figure S1. Principal component (PC) scores for PC1 (a) and PC2 (b) for whole-transcriptomic analysis of walleye (*Sander vitreus*) sampled in the Lake Winnipeg system in 2017 and 2018 (n = 8). Walleye were sampled from the Red River, Matheson Island, and Dauphin River, representing sites in the south basin, channel, and north basin, respectively. Locations that do not share a letter are significantly different from one another. An asterisk represents a significant effect of year within a location, while the inset represents an overall significant effect of year across locations (two-way ANOVA; see text for details). Horizontal bars in the boxplot represent the median response value and 75%, 50%, and 25% quartiles. Whiskers represent ± 1.5 times the interquartile range, and each dot represents an individual response value.

Figure S2. Number genes that were differentially expressed (DE) in walleye (*Sander vitreus*) from the Lake Winnipeg system in 2017 or 2018 only, or consistently across both years (Both). Walleye were sampled in the Red River, Matheson Island, and Dauphin River, representing sites in the south basin, channel, and north basin, respectively. Site comparisons represent differences of one site compared to the other two sites (i.e., Red River compared to both Matheson Island and Dauphin River; Matheson Island compared to both Red River and Dauphin River; Dauphin River compared to both Red River and Matheson Island). Genes are expressed in terms of their direction of regulation (up or down). Intermediate (int.) represents regulation in opposite directions relative to the two other sampling sites

(e.g., for Matheson Island, up-regulated compared to Red River, down-regulated compared to Dauphin River).

Figure S3. Summary of the enriched gene ontology (GO) terms of genes down-regulated in 2018 only for walleye (*Sander vitreus*; n = 8) sampled from Matheson Island compared to Red River and Dauphin River. Genes were considered differentially regulated at a false discovery rate < 0.05. Only GO terms from the functional analysis with an adjusted p < 0.05 with more than four transcripts were considered as significantly enriched. Significant GO terms were summarized using REVIGO to reduce redundancy and grouped according to similarity (right labels).

Figure S4. Summary of the enriched gene ontology (GO) terms of genes (a) up-regulated in both 2017 and 2018 as well as (b) up- and (c) down-regulated in 2018 only for walleye (*Sander vitreus*; n = 8) sampled from Dauphin River compared to Red River and Matheson Island. Genes were considered differentially regulated at a false discovery rate < 0.05. Only GO terms from the functional analysis with an adjusted p < 0.05 with more than four transcripts were considered as significantly enriched. Significant GO terms were summarized using REVIGO to reduce redundancy and grouped according to similarity (right labels).

Figure S5. Summary of the enriched gene ontology (GO) terms of genes (a) up- and (b) down-regulated in both 2017 and 2018 for walleye (*Sander vitreus*; n = 8) sampled from the Red River compared to Matheson Island and Dauphin River. Genes were considered differentially regulated at a false discovery rate < 0.05. Only GO terms from the functional analysis with an adjusted p < 0.05 with at least four transcripts were considered as significantly enriched. Significant GO terms were summarized using REVIGO to reduce redundancy and grouped according to similarity (right labels).

Figure S6. Summary of the enriched gene ontology (GO) terms of genes (a) down- and (b) up-regulated in 2017 only for walleye (*Sander vitreus*; n = 8) sampled from the Red River compared to Matheson Island and Dauphin River. Genes were considered differentially regulated at a false discovery rate < 0.05. Only GO terms from the functional analysis with an adjusted p < 0.05 with more than four transcripts were considered as significantly enriched. Significant GO terms were summarized using REVIGO to reduce redundancy and grouped according to similarity (right labels).

Figure S7. Summary of the enriched gene ontology (GO) terms of genes down-regulated in 2018 only for walleye (*Sander vitreus*; n = 8) sampled from the Red River compared to Matheson Island and Dauphin River. Genes were considered differentially regulated at a false discovery rate < 0.05. Only GO terms from the functional analysis with an adjusted p < 0.05 with more than four transcripts were considered as significantly enriched. Significant GO terms were summarized using REVIGO to reduce redundancy and grouped according to similarity (right labels).

Figure S8. Principal components analysis (PCA) of the 195 annotated genes that were differentially regulated across both 2017 and 2018 in walleye (*Sander vitreus*) sampled in the Lake Winnipeg system. Walleye were sampled from the Red River, Matheson Island, and Dauphin River in 2017 and 2018 (n = 8 per site and year), and genes that were differentially regulated (FDR < 0.05) at one site compared to the other two sites were identified. The variance explained by each PC is indicated in brackets.

Figure S9. Relative mRNA levels for candidate genes of walleye (*Sander vitreus*) from the lake Winnipeg system. Walleye were sampled from the Red River (RR; n = 14-19), Riverton (RT; n = 23-24), Matheson Island (MI; n = 9-18), and Dauphin River (DR; n = 17-19) in 2017 and 2018. Locations that do not share a letter are significantly different from one another. An asterisk represents a significant effect of year within a location, while the inset represents an overall significant effect of year across locations (see Table S9). Horizontal bars in the boxplot represent the median response value and 75%, 50%, and 25% quartiles. Whiskers represent ± 1.5 times the interquartile range, and each dot represents an individual response value. See Table S2 for gene abbreviations.

Figure S10. Relative mRNA levels for candidate genes of walleye (*Sander vitreus*) from the lake Winnipeg system. Walleye were sampled from the Red River (RR; n = 16-19), Riverton (RT; n = 22-24), Matheson Island (MI; n = 9-18), and Dauphin River (DR; n = 17-19) in 2017 and 2018. For each gene, there was a significant effect of year but not location (see Table S9). Horizontal bars in the boxplot represent the median response value and 75%, 50%, and 25% quartiles. Whiskers represent ± 1.5 times the interquartile range, and each dot represents an individual response value. See Table S2 for gene abbreviations.