Applied Filters
- Conservation and Sustainability
- Earth and Environmental SciencesRemove filter
Journal Title
Publication Date
Author
- Lotze, Heike K4
- Boyce, Daniel G3
- Atlas, William I2
- Bernstein, Sarah2
- Blanchard, Julia L2
- Bryndum-Buchholz, Andrea2
- Cheung, William W L2
- Cooke, Steven J2
- Corcoran, Patricia L2
- Housty, William G2
- Huntington, Aimee2
- Jantunen, Liisa2
- Maury, Olivier2
- Moore, Jonathan W2
- Palacios-Abrantes, Juliano2
- Rochman, Chelsea M2
- Shackell, Nancy2
- Stanley, Ryan R E2
- Stern, Gary A2
- Stortini, Christine H2
- Thaysen, Clara2
- Tittensor, Derek P2
- Adamczyk, Emily M1
- Adams, G1
- Araújo, Carlos A S1
Access Type
21 - 35of35
Save this search
Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Filters
Search Name | Searched On |
---|---|
[Subject Areas: Conservation and Sustainability] AND [Subject Areas: Earth and Env... (35) | 31 Oct 2024 |
You do not have any saved searches
- OPEN ACCESS
- Heike K. Lotze,
- Stefanie Mellon,
- Jonathan Coyne,
- Matthew Betts,
- Meghan Burchell,
- Katja Fennel,
- Marisa A. Dusseault,
- Susanna D. Fuller,
- Eric Galbraith,
- Lina Garcia Suarez,
- Laura de Gelleke,
- Nina Golombek,
- Brianne Kelly,
- Sarah D. Kuehn,
- Eric Oliver,
- Megan MacKinnon,
- Wendy Muraoka,
- Ian T.G. Predham,
- Krysten Rutherford,
- Nancy Shackell,
- Owen Sherwood,
- Elizabeth C. Sibert, and
- Markus Kienast
The abundance, distribution, and size of marine species are linked to temperature and nutrient regimes and are profoundly affected by humans through exploitation and climate change. Yet little is known about long-term historical links between ocean environmental changes and resource abundance to provide context for current and potential future trends and inform conservation and management. We synthesize >4000 years of climate and marine ecosystem dynamics in a Northwest Atlantic region currently undergoing rapid changes, the Gulf of Maine and Scotian Shelf. This period spans the late Holocene cooling and recent warming and includes both Indigenous and European influence. We compare environmental records from instrumental, sedimentary, coral, and mollusk archives with ecological records from fossils, archaeological, historical, and modern data, and integrate future model projections of environmental and ecosystem changes. This multidisciplinary synthesis provides insight into multiple reference points and shifting baselines of environmental and ecosystem conditions, and projects a near-future departure from natural climate variability in 2028 for the Scotian Shelf and 2034 for the Gulf of Maine. Our work helps advancing integrative end-to-end modeling to improve the predictive capacity of ecosystem forecasts with climate change. Our results can be used to adjust marine conservation strategies and network planning and adapt ecosystem-based management with climate change. - OPEN ACCESSWith the influence of climate change on marine systems expanding, climate adaptation will be fundamental for the future of fisheries management. An exponential increase in Atlantic halibut Hippoglossus hippoglossus landings over the past decade has coincided with warming ocean temperatures. Here, we explore how historical changes in abundance have been linked to changing thermal habitat conditions and project trends with a warming climate under different emissions scenarios. From 1990 to 2018, available thermal habitat increased by 11.6 ± 7.35% and growing degree days have increased by 13.5 ± 7.86 °C·days across the region. With warming, the probability of occurrence is projected to increase up to 20.5% in Canada by 2085 under RCP 8.5 for Atlantic halibut. Our results suggest that shifting patterns of halibut distribution and abundance are linked to thermal conditions and that continued warming will likely continue to enhance habitat conditions, leading to increased abundance in the Canadian range. Collectively, these results illustrate the influence of shifting environmental conditions on population dynamics and emphasize the importance of adaptive management practices in a dynamic future climate.
- OPEN ACCESS
- Juliano Palacios-Abrantes,
- Sarah M. Roberts,
- Talya ten Brink,
- Tim Cashion,
- William W.L. Cheung,
- Anne Mook, and
- Tu Nguyen
The world has set ambitious goals to protect marine biodiversity and improve ocean health in the face of anthropogenic threats. Yet, the efficiency of spatial tools such as marine reserves to protect biodiversity is threatened as climate change shifts species distributions globally. Here, we investigate the ability of global marine reserves to protect fish biomass under future climate change scenarios. Moreover, we explore regional patterns and compare worlds with and without marine reserves. We rely on computer modeling to simulate an utopian world where all marine reserves thrive and ocean governance is effective. Results suggest that climate change will affect fish biomass in most marine reserves and their surrounding waters throughout the 21st century. The biomass change varies among regions, with tropical reserves losing biomass, temperate ones gaining, and polar reserves having mixed effects. Overall, a world with marine reserves will still be better off in terms of fish biomass than a world without marine reserves. Our study highlights the need to promote climate resilient conservation methods if we are to maintain and recover biodiversity in the ocean under a changing world. - OPEN ACCESSDinerstein et al. present a spatially explicit global framework for protected areas needed to reverse catastrophic biodiversity losses and stabilize climate. The Province of Ontario (Canada) stands out in this “Global Safety Net (GSN)” as a critical jurisdiction for meeting those goals, because of both the large extent of roadless lands and high carbon storage in terrestrial ecosystems. Simultaneously, pressure is increasing to develop unmanaged lands in Ontario, particularly in the Far North, for resource extraction. Here, we extract data from the GSN to identify and calculate the areal extent of target regions present in Ontario and critically review the results in terms of accuracy and implications for conservation. We show that when region-specific data are incorporated, Ontario is even more significant than what is shown in the GSN, especially in terms of carbon stocks in forested and open peatlands. Additionally, the biodiversity metrics used in the GSN only partially capture opportunities for conservation in Ontario, and the officially recognized extent of Indigenous lands vastly underestimates the role of First Nations in conservation. Despite these limitations, our analyses indicate that Ontario plays an outsized role in terms of its potential to impact the trajectories both of biodiversity and climate globally.
- OPEN ACCESSSeasonal variation in seagrass growth and senescence affects the provision of ecosystem services and restoration efforts, requiring seasonal monitoring. Remotely piloted aircraft systems (RPAS) enable frequent high-resolution surveys at full-meadow scales. However, the reproducibility of RPAS surveys is challenged by varying environmental conditions, which are common in temperate estuarine systems. We surveyed three eelgrass (Zostera marina) meadows in Newfoundland, Canada, using an RPAS equipped with a three-color band (red, green, blue [RGB]) camera, to evaluate the seasonal reproducibility of RPAS surveys and assess the effects of flight altitude (30–115 m) on classification accuracy. Habitat percent cover was estimated using supervised image classification and compared to corresponding estimates from snorkel quadrat surveys. Our results revealed inconsistent misclassification due to environmental variability and low spectral separability between habitats. This rendered differentiating between model misclassification versus actual changes in seagrass cover infeasible. Conflicting estimates in seagrass and macroalgae percent cover compared to snorkel estimates could not be corrected by decreasing the RPAS altitude. Instead, higher altitude surveys may be worth the trade-off of lower image resolution to avoid environmental conditions shifting mid-survey. We conclude that RPAS surveys using RGB imagery alone may be insufficient to discriminate seasonal changes in estuarine subtidal vegetated habitats.
- OPEN ACCESSClimate change affects virtually all marine life and is increasingly a dominant concern for fisheries, reinforcing the need to incorporate climate variability and change when managing fish stocks. Canada is expected to experience widespread climate-driven impacts on its fisheries but does not yet have a clear adaptation strategy. Here, we provide an overview of a project we are developing, the Climate Adaptation Framework for Fisheries, to address this need and support climate adaptation in Canadian marine fisheries. The framework seeks to quantitatively and flexibly evaluate species, fishing infrastructure, and the management and operation of fisheries to assess climate vulnerability comprehensively and provide outputs that can support climate adaptation planning across different sectors, agencies, and stakeholders. This new framework should allow future climate scenarios to be evaluated and identify actionable climate vulnerabilities related to the management of fisheries, creating a systematic approach to supporting climate adaptation in Canada’s fisheries.
- OPEN ACCESSMarine Protected Areas (MPAs) are conservation tools that promote biodiversity by regulating human impacts. However, because MPAs are fixed in space and, by design, difficult to change, climate change may challenge their long-term effectiveness. It is therefore imperative to consider anticipated ecological changes in their design. We predict the time of emergence (ToE: year when temperatures will exceed a species’ tolerance) of 30 fish and invertebrate species in the Scotian Shelf-Bay of Fundy draft network of conservation areas based on climate projections under two contrasting emission scenarios (RCP 2.6 and RCP 8.5). We demonstrate a strong Southwest-to-Northeast gradient of change under both scenarios. Cold water-associated species had earlier ToEs, particularly in southwesterly areas. Under low emissions, 20.0% of habitat and 12.6% of species emerged from the network as a whole by 2100. Under high emissions, 51% of habitat and 42% of species emerged. These impacts are expected within the next 30–50 years in some southwestern areas. The magnitude and velocity of change will be tempered by reduced emissions. Our identification of high- and low-risk areas for species of direct and indirect conservation interest can support decisions regarding site and network design (and designation scheduling), promoting climate resilience.
- OPEN ACCESSThe creation and deployment of plastic structures made out of pipes and panels in freshwater ecosystems to enhance fish habitat or restore freshwater systems have become popularized in some regions. Here, we outline concerns with these activities, examine the associated evidence base for using plastic materials for restoration, and provide some suggestions for a path forward. The evidence base supporting the use of plastic structures in freshwater systems is limited in terms of ecological benefit and assurances that the use of plastics does not contribute to pollution via plastic degradation or leaching. Rarely was a cradle-to-grave approach (i.e. the full life cycle of restoration as well as the full suite of environmental consequences arising from plastic creation to disposal) considered nor were decommissioning plans required for deployment of plastic habitats. We suggest that there is a need to embrace natural materials when engaging in habitat restoration and provide more opportunities for relevant actors to have a voice regarding the types of materials used. It is clear that restoration of freshwater ecosystems is critically important, but those efforts need to be guided by science and not result in potential long-term harm. We conclude that based on the current evidence base, the use of plastic for habitat enhancement or restoration in freshwater systems is nothing short of littering.
- OPEN ACCESSThe impact of the southern Gulf of St. Lawrence American lobster (Homarus americanus) fishery on species bycatch is currently unknown. The composition of the incidental catch, both nonharvestable lobster (by fisheries regulations) and nonlobster species, was systematically collected over the 2015 spring and summer fishing seasons. A total of 51 948 (7147 were nonlobster taxa) individual organisms weighing 13 987.60 kg (1223.91 kg of nonlobster taxa) were captured as bycatch during 73 fishing trips. By weight per trip, the most common lobster bycatch were undersized male and females, and the highest nonlobster species catch were Atlantic rock crab (Cancer irroratus). A semiquantitative assessment of injury and vitality was applied to bycatch as a proxy for discard mortality. The majority of the individuals assessed for visible injury were deemed uninjured (98% both fish and invertebrates); however, postrelease mortality was not measured. A smaller study in 2019 corroborated the 2015 catches and supported current assumptions that the passive gear type, the low diversity of bycatch, and the rapid hand-sorting of the trap minimize the impact of the lobster fishery on incidentally captured taxa. Further scientific monitoring is recommended to better account for all sources of mortality in stock assessments and rebuilding plans.
- OPEN ACCESS
- Andrea Bryndum-Buchholz,
- Julia L. Blanchard,
- Marta Coll,
- Hubert Du Pontavice,
- Jason D. Everett,
- Jerome Guiet,
- Ryan F. Heneghan,
- Olivier Maury,
- Camilla Novaglio,
- Juliano Palacios-Abrantes,
- Colleen M. Petrik,
- Derek P. Tittensor, and
- Heike K. Lotze
Climate change is altering marine ecosystems across the globe and is projected to do so for centuries to come. Marine conservation agencies can use short- and long-term projections of species-specific or ecosystem-level climate responses to inform marine conservation planning. Yet, integration of climate change adaptation, mitigation, and resilience into marine conservation planning is limited. We analysed future trajectories of climate change impacts on total consumer biomass and six key physical and biogeochemical drivers across the Northwest Atlantic Ocean to evaluate the consequences for Marine Protected Areas (MPAs) and Other Effective area-based Conservation Measures (OECMs) in Atlantic Canada. We identified climate change hotspots and refugia, where the environmental drivers are projected to change most or remain close to their current state, respectively, by mid- and end-century. We used standardized outputs from the Fisheries and Marine Ecosystem Model Intercomparison Project and the 6th Coupled Model Intercomparison Project. Our analysis revealed that, currently, no existing marine conservation areas in Atlantic Canada overlap with identified climate refugia. Most (75%) established MPAs and more than one-third (39%) of the established OECMs lie within cumulative climate hotspots. Our results provide important long-term context for adaptation and future-proofing spatial marine conservation planning in Canada and the Northwest Atlantic region. - OPEN ACCESSAnthropogenic pressures, including urban and agricultural expansion, can negatively influence a lake's capacity to provide aquatic ecosystem services (ES). However, identifying lakes most at risk of losing their ES (i.e., higher vulnerability) requires integrating information on lake ecological state, global change threats, and ES use. Here, we provide a social–ecological framework that combines these features within a regional context by evaluating the ecological state of 659 lakes across Canada. Using the deviation of impacted lakes from reference ones, we identified much higher total nitrogen and chloride concentrations as the main indicators of an altered lake ecological state in all regions identified. Lake ecological state was mapped using an additive colour model along with regional scores of threat levels and recreational ES use. Urban and agriculturally developed areas were linked to higher lake vulnerability and ES loss. Lakes in Southern Ontario were most concerning, being highly altered, under threat, and heavily used. Lakes near coastal urban centers were altered and used, but less threatened, whereas those in the Prairies were altered and threatened, but less used. Our novel framework provides the first social–ecological geography of Canadian lakes, and is a promising tool to assess lake state and vulnerability at scales relevant for management.
- OPEN ACCESSMarine protected areas (MPAs) are critical in safeguarding biodiversity and ecosystem functions under climate change. The long-term effectiveness of these static conservation measures will depend on how well they represent current and future ocean changes. Here, we use the Climate Risk Index for Biodiversity to assess the vulnerability representation of marine ecosystems within the Canadian marine conservation network (CMCN) under two divergent emissions scenarios. We found that MPAs best represent climate vulnerability in Atlantic Canada (85% representativity overall, and 93% in the Gulf of Saint Lawrence under low emissions), followed by the Pacific (78%) and Arctic (63%; lowest in the Eastern Arctic (41% under high emissions) regions). Notably, MPAs with lower climate vulnerability are proportionally overrepresented in the CMCN. Broad-scale geographic targets employed in the Scotian Shelf-Bay of Fundy network planning process achieve over 90% representativity of climate vulnerabilities, underscoring the importance of ensuring habitat representativity and geographic distribution in conservation planning to enhance climate resilience, even if not explicitly prioritized. Moving towards Canada’s target to protect 30% of its waters by 2030, prioritizing representativity and designation of MPAs in currently underrepresented climate-vulnerable regions may be crucial to enhancing the resilience of the CMCN amidst an ever-changing climate.
- OPEN ACCESSReintroduction is an important tool in the conservation and recovery of aquatic species at risk. However, components of the reintroduction process such as transportation have the potential to induce physiological stress and the extent to which preparatory techniques can mitigate this stress is poorly understood in small-bodied fishes. To address this concern, we studied the effect of transport on two fitness-related performance measures: maximum metabolic rate and thermal tolerance in redside dace (Clinostomus elongatus), an imperilled small-bodied stream fish native to eastern North America. Prior to transportation, we manipulated the body condition of redside dace over a 12-week period, by providing either low (1% of their total body mass) or high (2% of their total body mass) rations. The goal of this manipulation was to influence body condition, as higher body condition can enhance physiological performance. Subsequently, redside dace were transported for varying durations: 0, 3, and 6 h. Following transportation, we measured maximum metabolic rate (µmol/h) and thermal tolerance (CTmax, °C). Our results indicate that neither transport nor body condition had a significant effect on maximum metabolic rate or thermal tolerance (CTmax). These findings provide preliminary evidence that redside dace can physiologically tolerate transport based on the endpoints measured and this information may possibly be extended to other small-bodied fish, for which information is lacking.
- OPEN ACCESS
- Colin J. Whitfield,
- Emily Cavaliere,
- Helen M. Baulch,
- Robert G. Clark,
- Christopher Spence,
- Kevin R. Shook,
- Zhihua He,
- John W. Pomeroy, and
- Jared D. Wolfe
In many regions, a tradeoff exists between draining wetlands to support the expansion of agricultural land, and conserving wetlands to maintain their valuable ecosystem services. Decisions about wetland drainage are often made without identifying the impacts on the services these systems provide. We address this gap through a novel assessment of impacts on ecosystem services via wetland drainage in the Canadian prairie landscape. Draining pothole wetlands has large impacts, but sensitivity varies among the indicators considered. Loss of water storage increased the magnitude of median annual flows, but absolute increases with drainage were higher for larger, less frequent events. Total phosphorus exports increased in concert with streamflow. Our analysis suggested disproportionate riparian habitat losses with the first 30% of wetland area drained. Dabbling ducks and wetland-associated bird abundances respond strongly to the loss of small wetland ponds; abundances were predicted to decrease by half with the loss of only 20%–40% of wetland area. This approach to evaluating changes to key wetland ecosystem services in a large region where wetland drainage is ongoing can be used with an economic valuation of the drainage impacts, which should be weighed against the benefits associated with agricultural expansion. - OPEN ACCESS
- Steven J. Cooke,
- Andy J. Danylchuk,
- Joel Zhang,
- Vivian M. Nguyen,
- Len M. Hunt,
- Robert Arlinghaus,
- Kathryn J. Fiorella,
- Hing Man Chan, and
- Tony L. Goldberg
Recreational fisheries involve an intimate connection between people, individual fish, and the environment. Recreational fishers and their health crucially depend on healthy fish and ecosystems. Similarly, fish and ecosystems can be impacted by the activities of people including recreational fishers. Thus, amplified by the global interest in recreational fishing, we posit that recreational fishing is particularly suited as an empirical system to explore a One Health perspective, with a goal of creating pathways to better manage such socio-ecological systems for the benefit of people, fish, and the environment. Although zoonoses are uncommon in fishes, fish can carry pathogens, biotoxins, or contaminants that are harmful to people. When captured and released, fish can experience stress and injuries that may promote pathogen development. Similarly, when humans contribute to environmental degradation, not only are fish impacted but so are the humans that depend on them for nutrition, livelihoods, culture, and well-being. Failure to embrace the One Health perspective for recreational fisheries has the potential to negatively impact the health of fish, fisheries, people, society, and the aquatic environment—especially important since these complex social–ecological systems are undergoing rapid change.